Zuraida Ahmad

SAGO (Metroxylon Rottb)

And Its Applications

20um

Sago (*Metroxylan Rottb*) and Its Applications

Editor Zuraida Ahmad

Published by HUM Piess International Islamic University Malaysia

First Edition, 2011 © HUM Press, HUM

All rights reserved. No part of this publication may be reproduced, stored in a retrival system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording or otherwise, without prior written permission of the publisher

Perpustakaan Negara Malaysia Cataloguing-in-Publication Data

Zuraida Ahmad

Sago (*Metrovylon Rottb*), and Its Applications Zurarda Ahmad Include Index ISBN 978-967-418-163-5

ISBN 978-967-418-163-5

Member of Majlis Penerbitan Ilmiah Malaysia - MAPIM (Malaysian Scholarly Publishing Council)

Printed by
HUM PRINTING SDN BHD
No. 1, Jalan Industri Batu Caves 1/3
Taman Perindustrian Batu Caves
Batu Caves Centre Point
68100 Batu Caves
Selangor Darul Ehsan
Tel. +603-6188 1542 / 44 / 45 Fax. +603-6188 1543
EMAIL humpinting@yahoo.com

Contents

Preface	vi
Chapter 1 Sago, Its Properties and Applications: A Review	1
Nurizan Omar, Nur Humairah, Maziati Akmal and Zuraida Ahmad	
Chapter 2	17
Comparative Study between Sytandard and	
Commercial Sago Starch Norhuda Hidayah Nordin, Zuraida Ahmad, Nurizan Omar and Tuti Yasmin Alias	
Chapter 3	27
Albumen-Thermoplastic Sago Starch Reinforced Cotton:	
Agro-Green Composites	
Yusliza Yusof and Zahurin Halim	
Chapter 4	41
Bioethanol Production from Sago	
Maizirwan Mel, Husna Muhammad Nadzri,	
Mohd Hider Kamarudin and Mohd Ismail Abd Karim	
Chapter 5	59
Optimizing Bioethanol Production from	
Sago Starch in Bioreactor for Renewable Energy	
Mohd Hider Kamarudin, Maizirwan Mel	
and Mohd Ismail Abdul Karim	
Chapter 6	71
The Effect of Saccharification Process	
of Sago Starch into Sugars	
Maizirwan Mel, Husna Muhammad Nadzri,	
Mohd Hider Kamarudin and Mohd Ismail Abd Karim	

Chapter 7	79
Feedstock Preparation of Injection Moulded	
Stainless Steel Using Biodegradable Starch Binder	
Mohd Afian Omar, Istikamah Subuki,	
Nor Syakıra Abdullah and Tutı Yasmın Alıas	
Chapter 8	87
Sago Starch-Nanoclay Biocomposites Film	
Nurızan Omar, Norazah Ishak and Zuraıda Ahmad	
Chapter 9	101
Preparation and Characterization	
of Glycerol Plasticized Sago Starch-Kenaf	
Core Fibers Biocomposites	
Norshahıda Sarıfuddın, Hanafı İsmaıl and Zuraıda Ahmad	
Chapter 10	115
Preliminary Study on Superabsorbent	
Polymer Hydrogel from Sago Starch	
Nurızan Omar, Norhuda Hıdayah Nordın and Zahurın Halım	
Index	125

Comparative Study between Standard and Commercial Sago Starch

Norhuda Hidayah Nordin, Zuraida Ahmad, Nurizan Omar and Tuti Yasmin Alias Faculty of Engineering – International Islamic University Malaysia zuraidaa@iium.edu.mv

Keywords: standard sago, commercial sago, characterization, properties

Preview. The properties of native sago starch are very much depend upon its botanical source. The same source of starch however, after underwent different pretreatment process, will also contribute to significant difference in their properties. Therefore, this study is concentrated on the characterization of standard and commercial sago starch. Special attention is given to their composition, morphology, and hydrogen bond of this starch, crystallinity as well as their thermal properties.

Introduction

Starch is one of the most important biopolymers and is widely used in numerous industrial applications such as in the food, pharmaceutical, paper and cosmetics industries. Starch is a polymeric mixture of essentially linear (amylose) and branched (amylopectin) alphaglucans. Starch functionality depends to a great extent on the molecular structure, size and weight of these components as demonstrated in gels, extrusion products and starch pastes [1].

Modified and unmodified starch products are extensively used for a variety of applications such as sizing agents for textiles and paper, as adhesives for corrugated and laminated paper boards and wall papers, flocculants, binders, fabric printing aids, thickeners, and many other