CURRENT RESEARCH AND DEVELOPMENTS IN BIOTECHNOLOGY ENGINEERING AT IIUM

(VOLUME IV)

Editors:
Ma’an Alkhatib
Abdullah Al Mamun
Faridah Yusof

Department of Biotechnology Engineering
Faculty of Engineering
International Islamic University Malaysia

IIUM Press
CONTENTS

PREFACE viii

CHAPTER 1 REMOVAL OF ZINC FROM WASTEWATER BY CARBON NANOTUBES 1
Nassereldeen A. Kabbashi, Ahmad Fadzil Ahmad Shuhaili, Md Z. Alam

CHAPTER 2 REMOVAL CHARACTERISTICS OF MANGANESE (MN2+) BY CNTS 8
Nassereldeen A. Kabbashi, Suleyman A.M, Mohamed E.S. Mirghani, Farhana I.Y

CHAPTER 3 REMOVAL TECHNIQUES OF CADMIUM FROM WASTEWATER BY CNTS 15
Nassereldeen A. Kabbashi, Muhammad Fikri Bin Rosly, Suleyman Muyibi

CHAPTER 4 KINETICS OF ACTIVATED CARBON FROM EFB IN MERCURY REMOVAL 21
Nassereldeen A. Kabbashi, Ma’an F. Alkhatib, Mohammed Elwathig and Ili Nadirah Bi Jamil

CHAPTER 5 CARBON NANOFIBERS TO REMOVE ARSENIC 26
Abdullah Al Mamun, Ma’an Alkhaitib, Zahirah Abd. Kadir

CHAPTER 6 CARBON NANOTUBES TO REMOVE CHROMIUM 32
Abdullah Al Mamun, Ma’an Alkhaitib, Aishah Jamaluddin Ahmad

CHAPTER 7 CARBON NANOTUBES TO REMOVE NICKEL 38
Abdullah Al Mamun, Ma’an Alkhaitib, Siti Melor Asnida Zainudin

CHAPTER 8 ADSORPTION ISOTHERM OF CARBON NANOTUBES IN REMOVING HEAVY METALS 44
Abdullah Al Mamun, Faridah Yusof, Norsyafini Ishak

CHAPTER 9 CARBON NANOFIBERS TO REMOVE NICKEL 50
Abdullah Al Mamun, Ma’an Alkhaitib, Halema Shajahan

CHAPTER 10 ADSORPTION OF LEAD BY CNTS GROWN ON GAC 54
Abdullah Al Mamun, Ma’an Alkhaitib, Iman Hawari

CHAPTER 11 ADSORPTION OF CADMIUM BY CNTS GROWN ON GACS 59
Abdullah Al Mamun, Ma’an Alkhaitib, Nada Hamid Al Samawi

CHAPTER 12 PERFORMANCE OF CNTS COLUMN IN REMOVING LEAD FROM WATER 63
Abdullah Al Mamun, Md Zahangir Alam, Muhammad Akram Abdul Hadi

CHAPTER 13 STABILITY OF DISPERSION OF (SW-CNT)-CARBOXY-METHYL CELLULOSE (CMC) IN AQUEOUS SOLUTION 68
Ahmad T. Jameel, Mohammed S. Jami and Syarishah R. Kamaruzaman

CHAPTER 14 OPTIMUM COLLOIDAL DISPERSION OF CARBON NANOTUBE IN ETHYLENE GLYCOL USING TRITON X-100 AS DISPERSING AGENT 74
Ahmad T. Jameel, Faridah Yusof, Natrah Ibrahim and Alade A. Olanrewaju

CHAPTER 15 CHARACTERIZATION OF IMMOBILIZED LIPASE ON MULTI-WALLED CARBON NANOTUBE 80
Nur Hidayah Zainan, Maan Fahmi Al-Khatib and Hanzah Mohd. Salleh

CHAPTER 16 PURIFICATION OF SKIM LATEX PROTEIN USING CARBON NANOTUBES AS THE CHROMATOGRAPHIC MEDIA 86
Faridah Yusof and Peer Mohamed
CHAPTER 17 COMPUTATIONAL STUDIES OF ADSORPTION GLYCINE
Ibrahim Ali Noorbachta, Hamzah Mohd Salleh and Nursafuwoa Abu Talib

CHAPTER 18 KINETIC STUDIES ON ENHANCED MERCURY ADSORPTION USING ACTIVATED CARBON
Nassereldeen Kabbashi, Noor Ilili

CHAPTER 19 ANALYSIS OF CROSS FLOW ULTRAFILTRATION MEMBRANE
Mohammed Saedi Jami, Tariq Jameel and Norasila Binti Ali Mahmud

CHAPTER 20 APPLICATION OF CARBON NANOTUBES IMPREGNATED ON ACTIVATED CARBON FOR CADMIUM REMOVAL FROM AQUEOUS SOLUTION
Ma'an Alkhathib, Abdillah Al-Mamun, Nurhazwani Muhamad Nor

CHAPTER 21 BIOPROCESSING OF MORINGA OLEIFERA FOR REMOVAL OF HEAVY METALS (CADMIUM AND CHROMIUM)
Suleyman Aremu Muyibi, Jamal Parveen, Wan Mohd Syaif Wan Sulaiman

CHAPTER 22 COAGULATION PERFORMANCE OF BIOACTIVE CONSTITUENTS ISOLATED FROM MORINGA OLEIFERA SEED IN LOW TURBIDITY WATER TREATMENT
Suleyman A. Mayibi, Eman N. Ali, Mohamad Ramlan Mohamed Salleh, Hamzah Mohd Salleh and Md Zahangir Alam

CHAPTER 23 DESIGN AND PRODUCTION OF CARBON NANOTUBE-BASED BIOSENSOR
Ma'an Alkhathib, Mohamad Faizal Bin Khamis, Waleed Fekry Faris

CHAPTER 24 DESIGN OF AN ADSORPTION SYSTEM FOR THE REMOVAL OF PHENOL FROM WATER USING ACTIVATED CARBON
Ma'an Alkhathib, Ahmad Tariq Jameel, Mohammad N. A. Altherbawi

CHAPTER 25 FEASIBILITY STUDY ON THE PRODUCTION OF BIODIESEL FROM MICROALGAE
Ma'an Alkhathib, Md. Zahangir Alam, Salma A. S. Binsilm

CHAPTER 26 IDENTIFICATION OF SUITABLE RESIN TO BE MIXED WITH COMMERCIALY AVAILABLE CASSAVA STARCH FOR RIGID PACKAGING APPLICATION
Ma'an Alkhathib, Noorhaza Bt Alias

CHAPTER 27 IMMOBILIZATION OF LIPASE ON MULTI-WALLED CARBON NANOTUBES
Ma'an Alkhathib, Hamzah Mohd Salleh, Anas M. N. Sultan

CHAPTER 28 INTEGRATION OF ARTIFICIAL NEURAL NETWORK AND PRINCIPAL COMPONENT ANALYSIS TECHNIQUES FOR WASTEWATER TREATMENT PLANT EVALUATION
Mohammed Saedi Jami, Nassereldeen A. Kabbashi and Mustapha Mujeli

CHAPTER 29 ISOLATION OF BACTERIA FROM OIL-CONTAMINATED SOIL FOR CRUDE OIL DEGRADATION
Ma'an Alkhathib, Humaidah Bt Dr Hj Muhammad Nur Lubis, Alade Abass Olanrewaju

CHAPTER 30 ISOLATION OF BACTERIA FROM SOIL FOR PLASTICS DEGRADATION
Ma'an Alkhathib, Nur Amalina Binti Ahmad, Alade Abass Olanrewaju
CHAPTER 31 OPTIMIZATION OF CELLULASE ENZYME PRODUCTION USING ARTIFICIAL NEURAL NETWORK
Mohammed Saedi Jami, Md. Zahangir Alam and Lamija Subasic

CHAPTER 32 POTENTIAL OF ARTIFICIAL NEURAL NETWORKS IN THE PREDICTION OF WASTEWATER TREATMENT PLANT PERFORMANCE
Mohammed Saedi Jami, Nassereeldeen Ahmed Kabashi and Norhafiza Binti Abdullah

CHAPTER 33 PRODUCTION OF ACTIVATED CARBON FROM OIL PALM EMPTY FRUIT BUNCH FOR ADSORPTION OF CADMIUM IN AQUEOUS SOLUTION
Suleyman A. Mayibi, Ma’an Alkhatib, Jeminat Onotayo Amode

CHAPTER 34 PRODUCTION OF ACTIVATED CARBON FROM PALM OIL EMPTY FRUIT BUNCH BY CHEMICAL ACTIVATION
Ma’an Alkhatib, Monawar Munjid

CHAPTER 35 REMOVAL OF AQUEOUS ZINC (II) USING PROCESSED MORINGA OLEIFERA SEEDS
Suleyman A. Mayibi, Isam Y. Qudsieh, M. H. A. Rahman

CHAPTER 36 REMOVAL OF COLOUR FROM PALM OIL MILL EFFLUENT USING GRANULAR ACTIVATED CARBON (GAC)
Ma’an Alkhatib, Abdullah Al Mamun, Iqrah Akbar

CHAPTER 37 THERMAL PROPERTIES ENHANCEMENT FOR THE DEVELOPED OF ETHYLENE VINYL ACETATE/EPOXIDIZED NATURAL RUBBER/CARBON NANOTUBES NANOCOMPOSITES
Faridah Yusof and Norazlina Mohamed Yatim

CHAPTER 38 EFFECT OF CARBON NANOTUBES LOADING ON THE MECHANICAL PROPERTIES OF ETHYLENE VINYL ACETATE/EPOXIDIZED NATURAL RUBBER NANOCOMPOSITES
Faridah Yusof and Norazlina Mohamed Yatim

INDEX
CHAPTER 24

DESIGN OF AN ADSORPTION SYSTEM FOR THE REMOVAL OF PHENOL FROM WATER USING ACTIVATED CARBON

Ma’an Alkhatib, Ahmad Tariq Jameel, Mohammad N. A. Alherbawi

Department of Biotechnology Engineering, Faculty of Engineering, International Islamic University Malaysia, Gombak, 50728 Kuala Lumpur, Malaysia.

ABSTRACT

The pollution of water resources due to organic contaminants - specifically phenols - has been causing worldwide concern. In this project, an adsorption column for the removal of phenol from water by activated carbon was modelled using COMSOL Multiphysics’ software. The column was designed to be (0.5 m) in height with a diameter of (0.05 m) and the initial velocity and concentration entering the column were assumed to be (0.045 m/s) and (1.1 mmol/ m³) respectively. The concentration of phenol in this model was successfully reduced to (0.02 mmol/ m³) which is in line with the Malaysian standard. Moreover, the effect of various parameters such as particle radius, flow rate and bed porosity on effluent concentration was studied in detail. Besides, Langmuir and Freundlich models were used to determine the parameters which quantify the adsorption process.

Keywords: adsorption, phenols, COMSOL Multiphysics, Langmuir, Freundlich

INTRODUCTION

Several treatment methods, including chemical and biological, have been applied for the removal of organic compounds from waste water, but they have achieved limited success, due to the fact that the amount and variety of chemicals in waste water is ever increasing due to the expansion of chemical, pharmaceutical, and other industries. Thus, a considerable effort has been directed to model more efficient and effective technologies for their removal. Adsorption columns using activated carbons were modeled and developed, because of the high surface area, high microporous structure, and high reactivity of activated carbons, and the results have indicated that they are the potential adsorbents for the removal of organic compounds from the waste water (Bansal and Goyal, 2005).

The presence of organic contaminants, such as Phenol, in the water is of a great concern due to their toxicity to human and other living things. The health effects of phenol exposure to humans is almost exclusively limited to case reports of acute effects of oral exposure, or occupational exposures, including some exposure by inhalation, however, severe chronic poisoning manifested in systemic disorders such as digestive disturbances including vomiting, difficulty swallowing, ptalism (excess secretion of saliva), diarrhea, and anorexia (Baker et al., 1978; Brace et al., 1987).

 Phenol poisoning is associated with headache, fainting, dizziness, and mental