BONE GRAFTS AND
BONE SUBSTITUTES

Basic Science and Clinical Applications
This page is intentionally left blank
Contents

Preface ix
Introduction xi
 A Nather
Contributors xiii

SECTION I: BASIC SCIENCE OF BONE

Chapter 1 Structure of Bone 3
 A Nather, HJC Ong and Z Aziz
Chapter 2 Fracture Healing 19
 A Nather, MCB Feng and Z Aziz
Chapter 3 An Introduction to Biomechanics of Bone 31
 B P Pereira and A Thambyah

SECTION II: AUTOGRRAFTS

Chapter 4 Autogenous Bone Grafting in Orthopaedic Surgery 59
 KL Pan and S Ibrahim
Chapter 5 Vascularised Pedicular Bone Grafts 71
 PB Chacha
Chapter 6 Vascularised Autograft: Basic Sciences and Clinical Applications 95
 YK Kang and YG Chung
Chapter 7 Healing of Large, Non-Vascularised, Cortical Autologus Bone Transplants: An Experimental Study in Adult Cats 119
 A Nather
SECTION III: ALLOGRAFTS

Chapter 8 Role of Bone Allografts in Orthopaedic Surgery
 A Nather and Z Aziz

Chapter 9 Setting Up a Tissue Bank
 A Nather and LH Wang

Chapter 10 Quality Control Issues in Tissue Banking
 N Hilmy

Chapter 11 Is the Irradiation Dose of 25 kGy Enough to Sterilise Tissue Grafts?
 N Yusof

Chapter 12 Diploma Course Training of Tissue Bank Operators: 7 Years of Experience
 A Nather, WY Teo and LH Wang

Chapter 13 Healing of Large Diaphyseal Deep-Frozen Cortical Allografts
 A Nather

Chapter 14 Bone Allotransplantation: Future Directions
 SM Kumta, PC Leung and LK Fu

SECTION IV: GENOMICS

Chapter 15 The Human Genome
 S Aziz, BC Lin and A Nather

Chapter 16 Genomics in Orthopaedics
 A Nather, S Aziz and F Kagda

Chapter 17 Gene Therapy and New Bone Formation
 LHC Tsai, SYE Neo and A Nather

SECTION V: BONE TISSUE ENGINEERING

Chapter 18 Stem Cell Technology and its Commercial Potential
 S Rauff and RE Oakley
<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>19</td>
<td>Setting Up a Tissue Engineering Laboratory</td>
<td>313</td>
</tr>
<tr>
<td></td>
<td>A Nather, CW Lee and ZQ Tang</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>Culturing Mesenchymal Stem Cells from Bone Marrow</td>
<td>321</td>
</tr>
<tr>
<td></td>
<td>A Nather, S Das De and CW Lee</td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>Bone Marrow Derived Mesenchymal Stem Cells: Potential for Tissue Regeneration</td>
<td>335</td>
</tr>
<tr>
<td></td>
<td>J Rosocha, G Vaško, G Varga and D Harvanová</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>Scaffolds in Bone Tissue Engineering</td>
<td>357</td>
</tr>
<tr>
<td></td>
<td>A Nather and S Aziz</td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>Carriers of Mesenchymal Cells</td>
<td>367</td>
</tr>
<tr>
<td></td>
<td>A Nather and V David</td>
<td></td>
</tr>
<tr>
<td>VI</td>
<td>SECTION VI: GROWTH FACTORS</td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>The Role of Bone Morphogenic Proteins in Bone Incorporation</td>
<td>379</td>
</tr>
<tr>
<td></td>
<td>A Nather and A Dutton</td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>Platelet-Rich Plasma in Orthopaedic Surgery: Basic Science and Clinical Applications</td>
<td>387</td>
</tr>
<tr>
<td></td>
<td>S Das De, R Manohara and A Nather</td>
<td></td>
</tr>
<tr>
<td>26</td>
<td>Applications of Autogenous Platelet Rich Plasma (PRP) Gel to Enhance Bone Formation</td>
<td>405</td>
</tr>
<tr>
<td></td>
<td>C-J Yim</td>
<td></td>
</tr>
<tr>
<td>VII</td>
<td>SECTION VII: CERAMICS</td>
<td></td>
</tr>
<tr>
<td>27</td>
<td>The Need for New Materials for Use in Bone in Man</td>
<td>431</td>
</tr>
<tr>
<td></td>
<td>PA Revell, E Damien</td>
<td></td>
</tr>
<tr>
<td>28</td>
<td>Role of Ceramics as Bone Graft Substitutes</td>
<td>445</td>
</tr>
<tr>
<td></td>
<td>V David, A Nather and KA Khalid</td>
<td></td>
</tr>
<tr>
<td>29</td>
<td>Enhancement of the Bioactivity of Orthopaedic Biomaterials: Role of Growth Factors, Ion Substitution and Implant Architecture</td>
<td>459</td>
</tr>
<tr>
<td></td>
<td>E Damien and PA Revell</td>
<td></td>
</tr>
</tbody>
</table>
Chapter 30 Fabrication of Granular Hydroxyapatite

F Fazan

Chapter 31 Role of Corals and Coralline Ceramics in Orthopaedic Surgery

V David, A Nather and KA Khalid

Chapter 32 Biomedical Use of Corals and Coralline Hydroxyapatite in Hard Tissue Replacement

E Damien and PA Revell

Chapter 33 Coral as Bone Graft Substitute

SA Hamid, AR Samsudin, R Salim and N Omar

SECTION VIII: PROSTHESES

Chapter 34 Rapid Prototyping in Orthopaedics: Principles and Applications

J Abdullah and AY Hassan

Chapter 35 Custom Mega Prosthesis for Bone Reconstruction in Orthopaedic Surgery

MV Natarajan, M Paraskumar and G Rajkumar

Index
Preface

This book discusses Bone Grafting using autografts from non-vascularised grafts to pedicled ones and free vascularised bone grafts and the various options to bone grafting i.e. the use of bone substitutes. The latter ranges from Allografts, Genomics in Orthopaedic Practice with particular reference to Bone Formation, Tissue Engineering including all 3 elements of the triad — Cells, Scaffolds and Signalling Molecules to Ceramics and Prostheses. The section of Ceramics include some results from the ten million ringgit Multi-Centre Research Project in Malaysia namely the fabrication of Malaysian Hydroxyapatite and the development of Malaysian Coral.

This book is useful to clinicians and clinician scientists in the field of Orthopaedics, Plastic and Reconstructive Surgery and Maxillo-Facial Surgery who are commonly presented with the clinical problem of reconstructing large bone defects. It is also useful to research scientists namely tissue engineers and biomedical engineers pursuing the field of research on bone substitutes in the field of allograft transplantation, genomics of bone, bone tissue engineering and the development of new generation bioceramics and new prostheses.

Associate Professor Aziz Nather
This page is intentionally left blank
Introduction

A Nather

Bone Grafting is one of the commonest operations performed in Orthopaedics. Its indications include non-union, delayed union, packing bone cysts and cavities, elevating depressed articular fractures and reconstruction of large bone defects. Autografting from the iliac crest is the gold standard. However, due to limitations as to amount, size and shape of the graft that could be procured as well as associated donor site morbidity, bone substitutes have become extremely important and useful for Orthopaedic Surgery, Plastic Reconstructive Surgery and Maxillo-Facial Surgery.

Section I first addresses the Basic Science of Bone including the structure of bone and the biomechanics of bone and the repair process that occurs in fracture healing.

Autografts are discussed in detail in Section II including the method of performing autogenous bone grafting and its diverse clinical applications. The ipsilateral pedicled bone graft and also the free vascularised bone graft are covered in detail. The healing of large non-vascularised cortical bone transplants is also described.

Section III deals with a common bone substitute — Allografts. Allografts have served this function very well for the last 5 decades. A useful chapter especially for Universities who have not set up a tissue bank is the chapter on “Setting Up a Tissue Bank” which serves as a useful guide to all wishing to establish a new bone banking facility. Issues of quality control for allografts, value of gamma irradiation to sterilize the bone grafts and the training of tissue bank operators are addressed in detail. Biology
and biomechanics of healing of cortical allografts and the future of bone allotransplantation is also described.

Section IV introduces the field of Genomics and discusses the use of Genomics in Orthopaedic Practice with particular reference to bone formation.

Bone Tissue Engineering is covered in depth in Section V including methodology for culturing Mesenchymal Stem Cells, types of scaffolds used and types of carriers employed for transplantation of cells.

In Section VI the third element of the Tissue Engineering Triad is addressed, namely signalling Molecules or Growth Factors. The role of BMPs and PRP are discussed.

Section VII covers Ceramics. Its scope ranges from the need of new biomaterials to the role of Hydroxyapatite, Coral and Coralline Ceramics as bone substitutes. The fabrication of the Malaysian Hydroxyapatite and the Malaysian Coral recently developed are also described.

Finally, this book on Bone Graft Substitutes would not be complete without discussing one other option, namely Prostheses. Rapid prototyping techniques and the use of Custom MegaProstheses are described in Section VIII.