Table of Content

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Amorphous Coating of Iron Nickel Alloy</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>Characterization of Electroplated Nanocrystalline NiFe Alloy Films</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td>Yusrimi Marita and Iskandar I. Yaacob</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Corrosion Behavior of Zinc in Potassium Hydroxide Aqueous Solution</td>
<td>13</td>
</tr>
<tr>
<td></td>
<td>Suryanto</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Development of Carbon Doped TiO₂ Photocatalyst for Pigment Degradation</td>
<td>19</td>
</tr>
<tr>
<td></td>
<td>Muh Rafiq Mirza Julaihi, Asep Sofwan Fauurhman Alqap and Iis Sopyan</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Dynamic Mechanical Analysis of Carbon Fibre Composites</td>
<td>25</td>
</tr>
<tr>
<td></td>
<td>Hazleen Anuar, Sahrim Hj. Ahmad and Rozaidi Rasid</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Effect of Composition on Phase Transformation of Iron-Platinum Nanoparticles</td>
<td>31</td>
</tr>
<tr>
<td></td>
<td>Koay Mei Hye and Iskandar I. Yaacob</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>Effect of Nanosized Alumina Reinforcement in Intermetallic Nickel Aluminide on the Formation of γ' Precipitates</td>
<td>37</td>
</tr>
<tr>
<td></td>
<td>Roslina Ismail and Iskandar I. Yaacob</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>Effect of Sintering Temperature on Protein Foaming-consolidation</td>
<td>43</td>
</tr>
<tr>
<td></td>
<td>Porous Alumina-tricalcium Phosphate Composites</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ahmad Fadli and Iis Sopyan</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>Electrical Property of ITO Thin Film Deposited by RF Magnetron Sputtering</td>
<td>49</td>
</tr>
<tr>
<td></td>
<td>Agus Geter Edy Sutjipto, Nurul Hajar and Farah Diana</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>Electrochemical Study of Zinc Selenide Thin Films Prepared for Photovoltaic Applications</td>
<td>55</td>
</tr>
<tr>
<td></td>
<td>Souad. A. Mohamad, A. K. Arof</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>Electrodeposited CdS / CdTe Solar Cells</td>
<td>61</td>
</tr>
<tr>
<td></td>
<td>Souad. A. Mohamad</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>Fabrication of Biomass Pellet from Mesocarp Fiber</td>
<td>65</td>
</tr>
<tr>
<td></td>
<td>Zahirin Halim and Nursazana Mohamad</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>Fabrication of Kenaf Sandwich Panel</td>
<td>68</td>
</tr>
<tr>
<td></td>
<td>Siti Khadijah Abdul Rahman and Zahirin Halim</td>
<td></td>
</tr>
</tbody>
</table>
Chapter 14
Foam Impregnation Method for Artificial Bone Graft Application: Study on the Effect of Drying Time 78
Fariza Abdul Rahman and Zuraida Ahmad

Chapter 15
Foam Impregnation Method for Artificial Bone Graft Application: Study on the Effect of Sintering Temperature 84
Zuraida Ahmad and Fariza Abdul Rahman

Chapter 16
FTIR Analysis - Aluminium Hydroxide Treated with Silane Coupling Agent 89
Noorasikin Samat, Nor Suhaila Nor Saidi and Muhammad Saffuan Sahat

Chapter 17
Inorganic / Organic /Inorganic Double Junction Thin Film Solar Cells 92
Souad. A. Mohamad

Chapter 18
Investigation on The Effect of Ultra Violet on Cotton Albumen Composite 96
Zahurin Halim, Zuraida Ahmad and Fauziah Md Yusof

Chapter 19
Measurement of Oxygen Permeability in Bulk Alloys by Internal Oxidation of Dilute Constituent 100
Mohd Hanafi Bin Ani and Raihan Othman

Chapter 20
Natural Dye Coated Nanocrystalline TiO2 Electrode Films for DSSCs 106
Souad. A. Mohamad and Iraj Alaei

Chapter 21
Normal Deposition to Anomalous Deposition 109
Suryanto

Chapter 22
Polymer Clay Nanocomposites: Part II- Synthesis of Polymer Nanocomposites 115
Noor Azlina Hassan, Norita Hassan

Chapter 23
Production of Porous Calcium Phosphate Ceramics through Polymeric Sponge Method 120
Asep Sofwan Faturrohman Alqap, Nur Ain Rakman, and Iis Sopyan

Chapter 24
Silicone Doped Calcium Phosphate Powder Synthesized via Hydrothermal Method 126
Asep Sofwan Faturrohman Alqap, Iis Sopyan and Zuria Farhana Kushaili

Chapter 25
Stress Analysis of Backend Metallization 132
Iskandar I. Yaacob and Goh Chia Lan

Chapter 26
Study on Metal Removing from Alumina Ceramics 137
Agus Geter Edy Sutjipto and Muhyiddin Bin Budah@Udah
Chapter 27
Surface Quality of *Dipterocarpus Spp* under Tropical Climate Change: Effect of Pre-Weathering
Mohd Khairun Anwar Uyup, Hamid Hamdan, Paridah Mat Tahir, Hazleen Anuar, Noorasikin Samat, Siti Rafidah Mohamed

Chapter 28
Surface Topography of Sulphuric Treated Carbon Fibre
Hazleen Anuar, Sahrim Hj. Ahmad and Rozaidi Rasid

Chapter 29
Synthesis and Characterization of Electrodeposited Iron-Platinum Nanostructured Thin Films
Scoh Hian Teh and Iskandar I. Yaacob

Chapter 30
Synthesis of Magnetic Nanoparticles in Water-in-Oil Microemulsions
Iskandar I. Yaacob

Chapter 31
The Effect of R-ratio on Fatigue Crack Propagation in Plasticised PVC and Modified PVC
Noorasikin Samat, Alan Whittle and Mark Hoffman

Chapter 32
The Effect of R-ratio on Fatigue Crack Propagation in Un-plasticized PVC and Modified PVC
Noorasikin Samat, Alan Whittle and Mark Hoffman

Chapter 33
Thin Film of Indium Tin Oxide and Its Deposition Technology Deposition
Agus Geter Edy Sutjipto, Sugrib Kumar Shaha

Chapter 34
X-ray Photoelectron Studies on the Surface Chemical States of Yttria-Stabilized Zirconia Thin Film in Aqueous Acid Hydrofluoric
Sukreen Hana Herman, Mohd Hanafi Ani, and Susumu Horita

Chapter 35
ZnO / Polymer Junction Growth for Hybrid Solar Cell Applications
Souad. A. Mohamad
Inorganic / Organic / Inorganic Double Junction Thin Film Solar Cells

Souad. A. Mohamad
Faculty of Engineering – International Islamic University Malaysia
✉: su3ad@iium.edu.my

Keywords: Inorganic, Organic, Redox couple, Multijunction, Photovoltaic properties.

Abstract. Recent advances in photovoltaic technology have made materials (other than silicon) in combination attractive for the design of solar cells. Designers layer semiconductor materials with differing band gap energies to result in higher conversion efficiencies. In this work multijunction cells consist of multiple thin films produced using electrochemical deposition technique on ITO glass substrates have been fabricated and characterized. Each cell configured as, ZnSe/polymer/ZnO and the polymer in this work is a blend of 50 wt% Chitosan and 50 wt% polyethylene oxide (PEO). To provide I/F redox couple, ammonium iodide NH₄I and some iodine crystals were added to the polymer blend solution. The polymer electrolyte film that showed highest room temperature ionic conductivity of 1.18 x 10⁻⁵ S cm⁻¹ was sandwiched between the ZnSe and ZnO semiconductors. The I–V characteristics for the determination of open circuit voltage, Vₒc and short-circuit current, Iₛ were carried out in the dark and under illumination. The cell was illuminated with a GE EDYSON neon lamp and the effective area was 1.0 cm².

Introduction
Silicon has been the material of choice for photovoltaic designers because it is inexpensive and relatively well understood—and, of course, because it has properties that make it appropriate for photovoltaic applications [1, 2]. Recent advances in photovoltaic technology, however, have made other materials in combination attractive for the design of solar cells. Designers layer semiconductor materials with differing band gap energies to result in higher conversion efficiencies. Although silicon can be used as one of these layers [3], alloys combining Group II elements with Group VI elements are enticing choices because of the wide range of band gap energies they offer the designers [4]. The photovoltaic designer must maximize power by optimizing the tradeoffs between current and voltage. To maximize current, it is desirable to capture as many photons from the spectrum of solar radiation as possible. A small band gap may then be selected so that even photons with lower radiation energies can excite electrons into the conduction band. However, the small band gap results in a lower photovoltage. Additionally, the photons with higher energies will have much of their energy wasted as heat, instead of conversion into electrical energy. Alternatively, the designer can choose a higher band gap, but then will not capture any photon energy less than that band gap, resulting in a lower photocurrent and, in turn, reducing the output current of the device. Multijunction cells use a combination of semiconductor materials to more efficiently capture a larger range of photon energies. They do so without sacrificing photovoltage or creating losses of heat to the degree of single-junction cells. Multiple layer