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Abstract

Active vibration control of the first three modes of a
vibrating cantilever beam using piezoelectric patches is
examined in this paper. A model based on Euler-Bernoulli
beam equation is adopted and extended to the case of
three bonded piezoelectric patches which act as sensor,
actuator and exciter respectively. The sensor and the
actuator are collocated to achieve a minimum phase. A
compensated inverse PID controller has been designed
and developed to damp these modes. Simulation studies
are carried using MATLAB. Individual controller has
been designed for each mode and then combined in
parallel to damp any of the three modes. Finally, the
simulation results are compared and verified
experimentally and the real-time implementation is
carried out with xPC target toolbox in MATLAB.
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1. Introduction

Advances in smart materials have shown an increased
interesting application of smart material for structural
‘mode damping. Some areas of applications are
- automobile, aerospace, - and precision machining.
Advancements in smart material technology have

produced much smaller actuators and sensors with high

structural integrity, making them suitable for use in many
control applications. In contrast to passive damping which
has fixed frequency range, piezoelectric materials can be
used to damp a wider range of frequencies without adding
much weight to the structure. Research in piezoelectric
materials is continuously revealing different areas of
application which when properly attached can improve
the quality and products in manufacturing industries.

Active vibration control can be achieved using many

techniques such as the modal approach for global
structural dynamics control [1], [2] and wave suppression
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method [3]. Piezoelectric materials for active vibration
control may be achieved either passively (with shunt
circuit) [4]-[6] or actively. In shunt circuit techniques, the
main role of piezoelectric material is to dissipate
mechanical energy. This is achieved when mechanical
work is done on an element and some portion of it is

- converted to and stored as dielectric energy. In a vibrating

structure, a shunt network can be configured to
accomplish vibration control by modifying the dynamics
of the electrical system [7], [8]. A properly tuned shunt
circuit can add significant damping to a structure. In
active vibration suppression, an external power is applied
to a piezoelectric material to produce force in opposite
direction to that produced by vibrating structure at a
particular position. The opposite forces cancel each other
and thus help to reduce the vibration. Piezoelectric
materials act as an actuator as well as a sensor in active
vibration suppression of flexible structures.

A technique of damping the first three modes of a
vibration beam using piezoelectric patches is discussed in
this paper. This paper shows the reduction in piezoelectric
sensor output under the effect of controller for the first
three modes. A compensated inverse PID controller is
designed to reduce multiple vibration modes of structures.
The ‘spillover’ effect which is caused by the presence of
uncontrolled or unmodeled modes within the bandwidth
of the closed loop system is also considered in designing
this controller. The controller developed for each mode is
tested- individually and later combined in parallel to
control any of the three modes. The performance of the
combined controller is discussed and a comparison is
made between the individual and the combined controller:

2. Euler-Bernoulli Beam Model

In this section, the mathematical model for Euler beam as
a continuous system with collocated piezoelectric sensor
and actuator is developed. Various transfer functions for
use in simulation studies are also discussed in detail.




2.1 Lateral Vibration of Beam
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Fig. 1. Lateral vibration of beam [9]

Considering the equation of motion along the z-axis and
the moment around y-axis at O leads to:

~(V+dV) + f(x,t)dx +V = pA(x)dxw (n
(M +dM)~ M —(V +adV)dx + f(x,f)dx%z 0 @
Inertia force acting on beam = i dxa a(x ) where , =

mass density and 4(x) = cross sectional area.

Taking. ;, OV ., ave =M ;. and(gx)? =0, in equation
ox Ox

(1),(2) gives:
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Based on Euler-Bernoulli or thin beam theory the
relationship between bending moment and deflection is
given by:

M(x.t) = E](x) Z (1) (4)

where E=Young’s modulus and I(x) is the area moment of
inertia of the beam cross section about the neutral axis.
Substituting (4) in (3) yields:
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2.2 Model with Bonded Piezoelectric Patches

In Fig. 2 the dimension and the position of the attached
piezoelectric patch on-the beam is shown. A voltage V(1)
is applied to the piezoelectric patches. -

Assuming the beam a one dimensional system, equation
(5) can be further modified as:

o’M,
ox?
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< Fig. 2. Collocated piezoelectric patches on the beam
where M, is the actuator induced bending moment. If the
beam is bent by an external load into downward curvature
the portion of the beam and piezo actuator above the
neutral axis will experience tension. The moment M, is
then given by:

M,=KV.(t) (7)
= By and _ 12E,h,[n+1, ]
h, *“hErF+E [(h +2h,) - ||

To incorporate the placement of the piezo patch on the
beam surface in x direction, Heaviside Step function is
employed, so that the finite, length of actuator can be
accommodated in equation (7) and can be written as:

M =KV, O[H(x-x,) - H(x-x,)] ®)

Using assumed mode approach, and substituting

z(x,t) = i w, (x)q, (z) and using (8) in (6) gives:
k=1

qA() ()(
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3. Transfer Functions for Simulation Studies

Laplace transform of equation (9) gives:

E(wk (%) - (% ))
PA(x)

V() 0)

Gl +wf]=
Since for the k-th mode, z, (x,s5)=w,(x)g,(s) this

equation then becomes:” ~

w (OK (9, () = w,' ()

(1)
PA(x)|s* + ? J

z.(x,8) = V.(s)




This gives the transfer function that describes the elastic
deflection of the entire beam due to an applied voltage to
the actuator. Incorporating a proportional damping [10]
term 2 & o to (11) gives: :

f(ns) & (57 )0 )= ) (g5
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3.1 Piezoelectric Sensor, Actuator and .
Exciter Voltage Relationships

Using Hooke’s law for beam deflection in x direction, the
strain experienced by the sensor patch is obtained as [11]:

Eb(x,t)=%=—(§+h ja aix i (13)

The strain introduced in the beam will produce an electric,
charge distribution per unit area in piezo sensor due to

piezoelectric effect. The electric charge distribution is
)

given by q(x,z‘):—ks—lgb where k;; is the
; &1

electromechanical coupling constant and g;; is the

piezoelectric  stress constant. The total charge

accumulated on the sensing layer can be found by

integrating q(x,t) over the entire surface area of the piezo

sensor and that is given by,

ho VK oG]
o) = Ll w,q(x,0)dx = —wp(—z— + ha) e

(14)
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Charged piezoelectric patches can be considered as a
parallel plate capacitor, where the voltage across the layer
is;

ol
GGz o

s)

V() =

where C, is the patch capacitance and x2-x1 is the length
of piezo sensor and C, is expressed as:

2
A e
C,g5(x2—-x1)

Taking the Laplace transform of (15) gives

e )_ Z(WA(xz)-WA (Al)Xw '(x2)— % "(x1))
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which can be written as

_ V() CK &w'62)-w'GD) (16
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Similarly relations for exciter voltage and sensor voltage

v (S)

can be derived using the geometry of the beam with
attached piezoelectric exciter as shown in Fig. 4. Force
F(x.t) is depends on the applied voltage, V(t) is used to
excite the piezoelectric patch.
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Fig. 4. Location of piezoelectric exciter on beam

The sensor voltage output for the applied exciter voltage
derived from equations (10) — (16) is given below.

G (9

v (s) i R, 9w, 2= w, 0] (17)
e = PADs* +28,0, + @} |

4. Controller Design

The structure of the closed loop system of the beam
attached with piezoelectric sensor and actuators is shown
in Fig 5.
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Fig. 5: Block diagram with feedback control for
piezoelectric sensor output (V(s))

Using the  actuator  voltage V() as
v.(s)=[V.(s)-7, (s)|c(s). the block diagram -in -Fig. 5
leads to the following closed loop transfer functions:

, C6Gns IV, (5)
1+ C(5)G,,.. (5)

G\’EVS (S)Ve (S)
1+ C(5)G s (5)

V. (s)= (18)

Tt is desired to have Vi(s) equal to zero as the role of the~
controller is only to eliminate the effects of the
disturbance force F(x,t) which is controlled by its voltage
V(s).

The'prdpose‘d controller in this paper is a ‘compensated
inverse PID’ denoted as CIPID. The controller is
developed by taking into consideration the effect of

 truncated modes which might cause the spillover effects

[12],[13]. Hence the controller is designed to attenuate the
first three modes so that




19)
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where Kp, K;and K, are respectively the gains of the PID
and these are tuned to damp any of the i-th mode, where

@, is the resonant frequency for the i-th mode, that is

K >
==l = 0‘)1‘_ ) _l<_P = Zé’a)’
KD \i KD i

Using superposition rules, the CIPID controller can be
extended to control the first three modes as shown in (19).
The controller for each mode will be arranged in parallel.
Fig. 6, shows the controller and beam with bonded

(20)

piezoelectric. Basically the CIPID is used to damp the -

resonant peaks by placing poles at each resonant
frequency. Changing Kp in the above equation will change
the damping factor for each mode and this can control the
resonant peak. However, higher damping factor doesn’t
imply that the peak will be always reduced; hence an
optimal value of Kp is required for each mode. Simulation
studies have been carried out with the transfer functions
derived in section 3 so as to obtain optimal values of Kp
for each mode. A digital lowpass filter is applied to the
sensor output to remove any interference signal or noise.
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Fig. 6. Controller and beam bonded with piezoelectric patches

5. Simulation Results

The ability of the controller suggested in (19) to damp the
resonant modes is studied in this section. Different values
of Kp, K; and K, are taken to study their effects on the
resonant modes. Simulation studies are carried out for the
individual and combined controllers. In order to get more
realistic simulation results, the damping values and mode
frequencies used in the simulation studies are taken from
the experimental results.  The experimental and analytical
damping ratios and mode frequencies are shown in Table
I
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Experimental

Modes Analytical g (dal?lping
Frequency Frequency ratio)
1 9.80 11.14 0.02027
2 61.41 66.74 0.01021
3 171.96 186.64 0.00520

Table 1: Experimental mode frequencies and its damping ratios

The value of Ky, is chosen to be 1, Ky is taken from (20)
and K is adjusted by taking different value of zeta (©) in
(20). In this way, one can focus on the effect of varying
Kp on the controller performance since Kp is directly
linked to the damping ration of the controller.

Simulations are carried out to find the optimal value of

Kp. The simulation results for Gyeys for first, second and

third modes for different values Kp are given in Fig. 7, 8

and 9 respectively. The resonant peak without controlier

is shown by “nocont” line. First mode peak is 18.6 dB,

second mode is 17.7 dB and third mode is -11.5 dB. Table.
2 shows the first mode reduction for resonant peak. Some -
smaller values of zeta cause undesirable shift to the

resonant frequency and introduce new peaks close to the

actual frequency. The reductions in peak for the second

and third modes are given in Table 3. It is found that the

lower damping values tend to increase the resonant peak,

instead of reducing it and at the same time it introduces

frequency shift. The optimum values are 11.141 for the

first mode which gives 18.676dB peak reduction, 2.2228

for the second mode leading to 11.46dB of peak reduction

and for the third mode is 11.141 with 2.9dB reduction in

peak.

Zeta Kp First mode reduction (dB)
10 222.82 3.33
5 11141 5.6
- 22.282 14.61
0.5 11.141 18.676
0.01 0.2228 14.05

Table 2: Reduction in first mode peak for different values of Kp
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Second mode Third mode
Zeta Kp reduction (dB) reduction (dB)
10 222.82 0.4 0.1
1 22.282 34 1.3
0.5 -11.141 5 2.9
0.1 2.2282 11.46 1155
0.01 0.2228 18.38 221
0.001 0.02282 18.4 -30.6

Table 3: Reduction in second and third mode peaks for different
values of Kp

S. Experimental Setup and Data Acquisition
System

An aluminum beam (6061 T651) attached with three ACX
piezoelectric patches shown in Fig. 10 are used to carry
out the experiment. Two unimorph patches model
QP10W are collocated and used as sensor and actuator.
One bimorph patch model QP25N is used as an exciter.

The piezoelectric exciter is placed at the middle of the

beam. The piezoelectric actuator and sensor are collocated
near the fixed end of the beam. The transfer function of a
collocated sensor-actuator has a minimum phase due to
pole-zero interlacing [14], [15]. Bonding piezoelectric
patch on the structure in the area of highest strain energy
will add most damping. It has been reported in [6], [17]
that the highest strain energy for the first three modes is at
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clamped boundary of the cantilever beam. As reported in
[17] an analytical equation can be used to accurately
predict the optimum position of piezoelectric patches. -
Based on this, the piezoelectric sensor and actuator are
attached at about 15 mm away from the clamped end of
the beam

Two linear power amplifiers are used in this setup. Both
amplifiers have a gain of up to 20 and output voltage of
+200V. A Keyence laser displacement sensor model LK-
081 is used to measure the beam tip displacement.
National instruments (NI) data acquisition card model
PCI-MIO-16XE-10 is used to acquire analog signal from
the piezoelectric sensor. Control signal is sent to

—piezoelectric actuator through output channel of the card.

A four channel HP-Dynamic signal analyzer (DSA)
model HP-35670A, is used to obtain beam resonant
frequencies and respective damping ratios. Controlled and
uncontrolled responses of the beam are measured and
analyzed using the DSA. Real-time implementation is
carried out using xPC Target toolbox in MATLAB. It is a
high-performance, host-target prototyping environment
that enables the connection or Simulink models to
physical systems and execute them in real-time on PC-
compatible hardware [18]. The schematic diagram for the
experimental setup is shown in Fig. 11. HP-DSA is used
to obtain fransfer functions under controlled and
uncontrolled condition. Ch3/Chl will measure transfer
function for piezo-sensor output to input excitation signal
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Fig. 10: Beam with attached piezoelectric patches
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6. Experimental Results

The beam is excited at its resonant frequencies as given in
Table 1. Experimental results for reduction in Gy for
individual controller are summarized in Table 4.

First Mode Second mode Third mode
Uncontrolled 1.2496 2.4594 0.02583
Controlled 0.1765 --0.8817 0.02374
Reduction 1.0731 1:57797 0.00209
Reduction (dB) 17.00 8.910 0.73287
Reduction ( % ) 92.05- - 64.15 8.10

Table 4 : Performance of the third mode controller: Gyeys (V/V)

Performance of the combined controller is tested by
exciting the beam with sweep sine signal of frequency
range 3 to 203 Hz, which comprises the first three
resonant mode frequencies. The reductions of resonant
peaks in dB under effects of combined controller are
shown in Fig. 12 and compared with the individual in
Table 5.

VIV s Gvevs - All three modes

16 7 ;[ ------- Uncontrolled
Controlled
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Fig. 12: Controlled and uncontrolled gain for G, for first three
modes

Individual controller Combined controller

T 17.00 17.07
224 8.91 6.827
31 0.73 0.424

Table 5: Reduction in resonant peaks in dB

7. Conclusion

The design, implementation and testing of an inverse type
PID controller for active vibration suppression of a beam
are presented in this paper. The results of the real-time
implementation of the controller using xPC target are
found to be very close to that of simulation studies which
actually demonstrates the effectiveness of this technique.
In general for Gyeys, the individual controller has shown
better performance over the combined controller for
second and third modes while the results are almost
similar for the first mode. The drop in resonant peaks for
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the combined controller is beheved to be caused by the
coupling effects.
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