ADVANCED MACHINING TOWARDS IMPROVED MACHINABILITY OF DIFFICULT-TO-CUT MATERIALS

Edited by: A.K.M. Nurul Amin (Chief Editor) Dr. Erry Yulian Triblas Adesta Dr. Mohammad Yeakub Ali

IIUM PRESS

INTERNATIONAL ISLAMIC UNIVERSITY MALAYSIA

ADVANCED MACHINING TOWARDS IMPROVED MACHINABILITY OF DIFFICULT-TO-CUT MATERIALS

Edited by: A.K.M. Nurul Amin (Chief Editor) Dr. Erry Yulian Triblas Adesta Dr. Mohammad Yeakub Ali

Published by: IIUM Press International Islamic University Malaysia

First Edition, 2011 ©IIUM Press, IIUM

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise, without any prior written permission of the publisher.

Perpustakaan Negara Malaysia

Cataloguing-in-Publication Data

Advanced Machining Towards Improved Machinability of Difficult-To-Cut Materials: A.K.M. Nurul Amin, Erry Yulian Triblas Adesta & Mohammad Yeakub Ali

ISBN: 978-967-418-175-8

Member of Majlis Penerbitan Ilmiah Malaysia – MAPIM (Malaysian Scholarly Publishing Council)

Printed by: **HUM PRINTING SDN.BHD.**

No. 1, Jalan Industri Batu Caves 1/3
Taman Perindustrian Batu Caves
Batu Caves Centre Point
68100 Batu Caves
Selangor Darul Ehsan

Tel: +603-6188 1542 / 44 / 45 Fax: +603-6188 1543 EMAIL: iiumprinting@yahoo.com

Published by: IIUM Press International Islamic University Malaysia

First Edition, 2011 ©IIUM Press, IIUM

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise, without any prior written permission of the publisher.

Perpustakaan Negara Malaysia

Cataloguing-in-Publication Data

Advanced Machining Towards Improved Machinability of Difficult-To-Cut Materials: A.K.M. Nurul Amin, Erry Yulian Triblas Adesta & Mohammad Yeakub Ali

ISBN: 978-967-418-175-8

Member of Majlis Penerbitan Ilmiah Malaysia – MAPIM (Malaysian Scholarly Publishing Council)

Printed by:

HUM PRINTING SDN.BHD.

No. 1, Jalan Industri Batu Caves 1/3
Taman Perindustrian Batu Caves
Batu Caves Centre Point
68100 Batu Caves
Selangor Darul Ehsan

Tel: +603-6188 1542 / 44 / 45 Fax: +603-6188 1543

EMAIL: iiumprinting@yahoo.com

SEC	CTION A: HEAT ASSISTED MACHINING	1
1.	CHAPTER 1: INFLUENCE OF WORKPIECE PREHEATING ON CHATTER AND MACHINABILITY OF TITANIUM LOY - TI6AL4V	1
2.	CHAPTER 2: MACHINABILITY IMPROVEMENT IN END OF MILLING TITANIUM ALLOY TI-6AL-4V THROUGH PREHEATING	9
3.	CHAPTER 3: SOME ASPECTS OF IMPROVED MACHINABILITY IN PREHEATED MACHININING OF TITANIUM ALLOY TI-6AL-4V	19
4.	CHAPTER 4: MACHINABILITY ASPECTS IN HEAT ASSISTED MACHINING OF HARDENED STEEL AISI H13 USING COATED CARBIDE TOOL	27
5	CHAPTER 5: TOOL WEAR AND SURFACE ROUGHNESS ASPECTS IN HEAT ASSISTED END MILLING OF AISI D2 HARDENED STEEL	35
6	CHAPTER 6: MODELING IN PREHEATED MACHINING OF AISI D2 HARDENED STEEL	
7	CHAPTER 7: RELATIVE PERFORMANCES OF PREHEATING, CRYOGENIC COOLING AND HYBRID TURNING OF STAINLESS STEEL AISI 304	43 49
SEC	CTION B: CHATTER AND SELECTED METHODS OF CHATTER SUPPRESSION	
8	CHAPTER 8: ROLE OF THE FREQUENCY OF SECONDARY SERRATED TEETH IN CHATTER FORMATION DURING TURNING OF CARBON STEEL AISI 1040 AND STAINLESS STEEL	57 57
9	CHAPTER 9: INFLUENCE OF THE ELASTIC SYSTEM AND CUTTING PARAMETERS ON CHATTER DURING MACHINING OF MILD STEEL	65
10	CHAPTER 10: INFLUENCE OF CHATTER ON TOOL LIFE DURING END MILLING OF ALUMINIUM AND ALUMINIUM ALLOY ON VMC	75

Advanced Machining

т	_	\sim	
List	ot-	Con	tents

		Bibl by Comemis
11	CHAPTER 11: A NEW METHOD FOR CHATTER SUPPRESSION AND IMPROVEMENT OF SURFACE ROUGHNESS IN END MILLING OF MILD STEEL	83
	MILLING OF MILL STEEL	03
12	CHAPTER 12: APPLICATION OF PERMANENT ELECTROMA	
	GNET FOR CHATTER CONTROL IN END MILLING OF	
	MEDIUM CARBON STEEL	91
13	CHAPTER 13: APPLICATION OF PERMANENT ELECTROMA	
	GNET FOR CHATTER CONTROL IN END MILLING OF	
	TITANIUM ALLOY - TI6AL4V	99
14	CHAPTER 14: CHATTER SUPPRESSION IN END MILLING OF	
14	TITANIUM ALLOY TI6AL4V APPLYING PERMANENT	
	MAGNET CLAMPED ADJACENT TO THE WORKPIECE	107
	MAGNET CEAMTED ADJACENT TO THE WORKINGCE	107
SE C	CTION C: MODELING AND OPTIMIZATION IN MACHINING	117
SEC	THON C: MODELING AND OF HMIZATION IN MACHINING	117
15	CHAPTER 15: A COUPLED ARTIFICIAL NEURAL	
	NETWORK AND RSM MODEL FOR THE PREDICTION OF	
	CHIP SERRATION FREQUENCY IN END MILLING OF	
	INCONEL 718	117
16	CHAPTER 16: APPLICATION OF RESPONSE SURFACE	
	METHODOLOGY COUPLED WITH GENETIC ALGORITHM	
	FOR SURFACE ROUGHNESS OF INCONEL 718	123
17	CHAPTER 17: DEVELOPMENT OF A MATHEMATICAL	
	MODEL FOR THE PREDICTION OF SURFACE	
	ROUGHNESS IN END MILLING OF STAINLESS STEEL SS 304	133
40		
18	CHAPTER 18: DEVELOPMENT OF AN ARTIFICIAL	
	NEURAL NETWORK ALGORITHM FOR PREDICTING THE CUTTING FORCE IN END MILLING OF INCONEL 718 ALL	OY 143
	THE CUTTING FORCE IN END MILLING OF INCONEL /18 ALL	OY 143
19	CHAPTER 19: DEVELOPMENT OF AN ARTIFICIAL NEURAL	
	NETWORK ALGORITHM FOR PREDICTING THE SURFACE	149
20	CHAPTER 20: DEVELOPMENT OF TOOL LIFE	
	PREDICTION MODEL OF TIAIN COATED TOOLS DURING	
	PART C: HIGH SPEED HARD MILLING OF AISI H13 STEEL	155
21	CHAPTER 21: MODELING FOR SURFACE ROUGHNESS IN	
21	END-MILLING OF TITANIUM ALLOY Ti-6Al-4V USING	
	UNCOATED WC INSERTS	161

Advanced Machining

	The various water and the control of	List of Contents
22	CHAPTER 22: MODELING OF SURFACE ROUGHNESS DURING END MILLING OF AISI H13 HARDENED TOOL STEEL	167
23	CHAPTER 23: MODELING OF TOOL LIFE USING RESPONSE SURFACE METHODOLOGY IN HARD MILLING OF AISI D2 TOOL STEEL	175
24	CHAPTER 24: OPTIMIZATION OF SURFACE ROUGHNESS IN HIGH SPEED END MILLING OF TITANIUM ALLOY Ti-6AI-4V UNDER DRY CONDITION	181
25	CHAPTER 25: COMPARISON OF SURFACE ROUGHNESS IN END-MILLING OF TITANIUM ALLOY TI-6AL-4V USING UNCOATED WC-CO AND PCD INSERTS THROUGH GENERATION OF MODELS	189
26	CHAPTER 26: ASSESSMENT OF PERFORMANCE OF UNCOATED AND COATED CARBIDE INSERTS IN END MILLING OF TI–6AL–4V THROUGH MODELLING	195
	CTION D: CRYOGENIC AND HIGH SPEED MACHINING OF TALS AND NON METALS	203
27	CHAPTER 27: THE EFFECT OF CRYOGENIC COOLING ON MACHINABILITY OF STAINLESS STEEL DURING TURNING	G 203
28	CHAPTER 28: COMPARISON OF MACHINABILITY OF CERAMIC INSERT IN ROOM TEMPERATURE AND CRYOGENIC COOLING CONDITIONS DURING END MILLING INCONEL 718	C 209
29	CHAPTER 29: HIGH SPEED END MILLING OF SINGLE CRYSTA SILICON SING DIAMOND COATED TOOL	AI. 217
30	CHAPTER 30: IMPLEMENTATION OF HIGH SPEED OF SILICON USING DIAMOND COATED TOOLS WITH AIR BLOWI	NG 225
31	CHAPTER 31: ELIMINATION OF BURR FORMATION DURING END MILLING OF POLYMETHYL METHACRYLATE (PMMA) THROUGH HIGH SPEED MACHINING	233

239

32 CHAPTER 32: WEAR MECHANISMS IN END MILLING

OF INCONEL 718

Advanced Machining

	The state of the s	List of Content <mark>s</mark>
33	CHAPTER 33: PERFORMANCE OF UNCOATED WC-CO INSERTS IN END MILLING OF ALUMINUM SILICON	
	CARBIDE (ALSiC)	247
34	CHAPTER 34: APPLICATION OF PCD INSERTS IN END MILLING OF ALUMINUM SILICON CARBIDE (ALSIC)	G 253
35	CHAPTER 35: EFFECTS OF SCRIBING WHEEL DIMENSIONS ON LCD GLASS CUTTING	250