ADVANCED MACHINING TOWARDS IMPROVED MACHINABILITY OF DIFFICULT-TO-CUT MATERIALS

Edited by:
A.K.M. Nurul Amin (Chief Editor)
Dr. Erry Yulian Triblas Adesta
Dr. Mohammad Yeakub Ali

IIUM PRESS
INTERNATIONAL ISLAMIC UNIVERSITY MALAYSIA
ADVANCED MACHINING
TOWARDS IMPROVED MACHINABILITY OF DIFFICULT-TO-CUT MATERIALS

Edited by:
A.K.M. Nurul Amin (Chief Editor)
Dr. Erry Yulian Triblas Adesta
Dr. Mohammad Yeakub Ali

IIUM Press
<table>
<thead>
<tr>
<th>SECTION A: HEAT ASSISTED MACHINING</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1. CHAPTER 1: INFLUENCE OF WORKPIECE PREHEATING ON CHATTER AND MACHINABILITY OF TITANIUM LOY - TI6AL4V</td>
<td>1</td>
</tr>
<tr>
<td>2. CHAPTER 2: MACHINABILITY IMPROVEMENT IN END OF MILLING TITANIUM ALLOY TI-6AL-4V THROUGH PREHEATING</td>
<td>9</td>
</tr>
<tr>
<td>3. CHAPTER 3: SOME ASPECTS OF IMPROVED MACHINABILITY IN PREHEATED MACHINING OF TITANIUM ALLOY TI-6AL-4V</td>
<td>19</td>
</tr>
<tr>
<td>4. CHAPTER 4: MACHINABILITY ASPECTS IN HEAT ASSISTED MACHINING OF HARDENED STEEL AISI H13 USING COATED CARBIDE TOOL</td>
<td>27</td>
</tr>
<tr>
<td>5. CHAPTER 5: TOOL WEAR AND SURFACE ROUGHNESS ASPECTS IN HEAT ASSISTED END MILLING OF AISI D2 HARDENED STEEL</td>
<td>35</td>
</tr>
<tr>
<td>6. CHAPTER 6: MODELING IN PREHEATED MACHINING OF AISI D2 HARDENED STEEL</td>
<td>43</td>
</tr>
<tr>
<td>7. CHAPTER 7: RELATIVE PERFORMANCES OF PREHEATING, CRYOGENIC COOLING AND HYBRID TURNING OF STAINLESS STEEL AISI 304</td>
<td>49</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SECTION B: CHATTER AND SELECTED METHODS OF CHATTER SUPPRESSION</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>8. CHAPTER 8: ROLE OF THE FREQUENCY OF SECONDARY SERRATED TEETH IN CHATTER FORMATION DURING TURNING OF CARBON STEEL AISI 1040 AND STAINLESS STEEL</td>
<td>57</td>
</tr>
<tr>
<td>9. CHAPTER 9: INFLUENCE OF THE ELASTIC SYSTEM AND CUTTING PARAMETERS ON CHATTER DURING MACHINING OF MILD STEEL</td>
<td>65</td>
</tr>
<tr>
<td>10. CHAPTER 10: INFLUENCE OF CHATTER ON TOOL LIFE DURING END MILLING OF ALUMINIUM AND ALUMINIUM ALLOY ON VMC</td>
<td>75</td>
</tr>
<tr>
<td>Chapter</td>
<td>Title</td>
</tr>
<tr>
<td>---------</td>
<td>---</td>
</tr>
<tr>
<td>11</td>
<td>CHAPTER 11: A NEW METHOD FOR CHATTER SUPPRESSION AND IMPROVEMENT OF SURFACE ROUGHNESS IN END MILLING OF MILD STEEL</td>
</tr>
<tr>
<td>12</td>
<td>CHAPTER 12: APPLICATION OF PERMANENT ELECTROMAGNET FOR CHATTER CONTROL IN END MILLING OF MEDIUM CARBON STEEL</td>
</tr>
<tr>
<td>13</td>
<td>CHAPTER 13: APPLICATION OF PERMANENT ELECTROMAGNET FOR CHATTER CONTROL IN END MILLING OF TITANIUM ALLOY - Ti6Al4V</td>
</tr>
<tr>
<td>14</td>
<td>CHAPTER 14: CHATTER SUPPRESSION IN END MILLING OF TITANIUM ALLOY Ti6Al4V APPLYING PERMANENT MAGNET CLAMPED ADJACENT TO THE WORKPIECE</td>
</tr>
<tr>
<td></td>
<td>SECTION C: MODELING AND OPTIMIZATION IN MACHINING</td>
</tr>
<tr>
<td>15</td>
<td>CHAPTER 15: A COUPLED ARTIFICIAL NEURAL NETWORK AND RSM MODEL FOR THE PREDICTION OF CHIP SERRATION FREQUENCY IN END MILLING OF INCONEL 718</td>
</tr>
<tr>
<td>16</td>
<td>CHAPTER 16: APPLICATION OF RESPONSE SURFACE METHODOLOGY COUPLED WITH GENETIC ALGORITHM FOR SURFACE ROUGHNESS OF INCONEL 718</td>
</tr>
<tr>
<td>17</td>
<td>CHAPTER 17: DEVELOPMENT OF A MATHEMATICAL MODEL FOR THE PREDICTION OF SURFACE ROUGHNESS IN END MILLING OF STAINLESS STEEL SS 304</td>
</tr>
<tr>
<td>18</td>
<td>CHAPTER 18: DEVELOPMENT OF AN ARTIFICIAL NEURAL NETWORK ALGORITHM FOR PREDICTING THE CUTTING FORCE IN END MILLING OF INCONEL 718 ALLOY</td>
</tr>
<tr>
<td>19</td>
<td>CHAPTER 19: DEVELOPMENT OF AN ARTIFICIAL NEURAL NETWORK ALGORITHM FOR PREDICTING THE SURFACE</td>
</tr>
<tr>
<td>20</td>
<td>CHAPTER 20: DEVELOPMENT OF TOOL LIFE PREDICTION MODEL OF TIAIN COATED TOOLS DURING PART C: HIGH SPEED HARD MILLING OF AISI H13 STEEL</td>
</tr>
<tr>
<td>21</td>
<td>CHAPTER 21: MODELING FOR SURFACE ROUGHNESS IN END-MILLING OF TITANIUM ALLOY Ti-6Al-4V USING UNCOATED WC INSERTS</td>
</tr>
</tbody>
</table>
Advanced Machining

List of Contents

22 CHAPTER 22: MODELING OF SURFACE ROUGHNESS DURING END MILLING OF AISI H13 HARDENED TOOL STEEL 167

23 CHAPTER 23: MODELING OF TOOL LIFE USING RESPONSE SURFACE METHODOLOGY IN HARD MILLING OF AISI D2 TOOL STEEL 175

24 CHAPTER 24: OPTIMIZATION OF SURFACE ROUGHNESS IN HIGH SPEED END MILLING OF TITANIUM ALLOY Ti-6Al-4V UNDER DRY CONDITION 181

25 CHAPTER 25: COMPARISON OF SURFACE ROUGHNESS IN END-MILLING OF TITANIUM ALLOY Ti-6Al-4V USING UNCOATED WC-CO AND PCD INSERTS THROUGH GENERATION OF MODELS 189

26 CHAPTER 26: ASSESSMENT OF PERFORMANCE OF UNCOATED AND COATED CARBIDE INSERTS IN END MILLING OF Ti-6Al-4V THROUGH MODELLING 195

SECTION D: CRYOGENIC AND HIGH SPEED MACHINING OF METALS AND NON METALS 203

27 CHAPTER 27: THE EFFECT OF CRYOGENIC COOLING ON MACHINABILITY OF STAINLESS STEEL DURING TURNING 203

28 CHAPTER 28: COMPARISON OF MACHINABILITY OF CERAMIC INSERT IN ROOM TEMPERATURE AND CRYOGENIC COOLING CONDITIONS DURING END MILLING INCONEL 718 209

29 CHAPTER 29: HIGH SPEED END MILLING OF SINGLE CRYSTAL SILICON SING DIAMOND COATED TOOL 217

30 CHAPTER 30: IMPLEMENTATION OF HIGH SPEED OF SILICON USING DIAMOND COATED TOOLS WITH AIR BLOWING 225

31 CHAPTER 31: ELIMINATION OF BURR FORMATION DURING END MILLING OF POLYMETHYL METHACRYLATE (PMMA) THROUGH HIGH SPEED MACHINING 233

32 CHAPTER 32: WEAR MECHANISMS IN END MILLING OF INCONEL 718 239
CHAPTER 33: PERFORMANCE OF UNCOATED WC-CO INSERTS IN END MILLING OF ALUMINUM SILICON CARBIDE (ALSiC)

CHAPTER 34: APPLICATION OF PCD INSERTS IN END MILLING OF ALUMINUM SILICON CARBIDE (ALSiC)

CHAPTER 35: EFFECTS OF SCRIBBING WHEEL DIMENSIONS ON LCD GLASS CUTTING

247

253

259
Chapter 32

Wear mechanisms in End Milling of Inconel 718

A.K.M. Nurul Amin*, Mohammad Ishtiaq Hossain, Enayet U Patwari
Faculty of Engineering, Department of manufacturing and material engineering,
International Islamic University Malaysia (IIUM), P.O. Box 10, 50728, Kuala Lumpur,
Malaysia.
*Corresponding author: akamin@iiu.edu.my

1.0 INTRODUCTION

Nickel-based, creep-resistant, superalloy Inconel 718 is amongst the most difficult alloys to
machine. The main reason for the poor machinability of the alloy is the high work-hardening
rate by the precipitation of a γ' phase and the presence of hard abrasive phases such as
titanium carbide, niobium carbide and the NiTiAlTi phase. Generally, increasing the amount of
γ' phase by increasing the amount of titanium and aluminum increases the rate of tool wear
[1]. The nickel-based alloys also retain their strength at elevated temperatures and this result
in high cutting forces even at high cutting speeds for which high temperatures are generated
[2].

It is very complicated to predict tool life in end milling with sufficient accuracy on the basis
of controllable process parameters. Nevertheless, it is an essential part of a machining system
in the automated factory to change tools automatically due to wear or catastrophic failure. A
number of tool materials were used by the researchers in an attempt to increase machinability
of Inconel 718 so far, such as, coated tungsten carbide, alumina (Al2O3), SiC whisker-
reinforced alumina and cubic boron nitrate (CBN) etc. [3],[4],[5]. Of these materials coated
tungsten carbide is the most widely used. Currently, it is estimated that over 80-85% of all
carbide tools sold are coated [6]. In general, coated tools perform better when machining
nickel-based superalloys due to the coatings increased hardness, ability to act as a barrier to
thermal and atomic diffusion and by altering the coefficient of friction [7]. Derrien et al found
that TiN coated tools resulted in higher tool life and lower surface roughness that uncoated
tools when milling Inconel 718 [8]. Gatto et al recommended that CrN and TiAlN coatings
improved tool performance by acting as a thermal barrier and therefore preventing the high
temperature generated in the cutting process from softening the substrate [9]. TiAlN and CrN
coated carbide tools were compared in end milling of Inconel 718 by Sharman et al [10] and
it was found that TiAlN gave on an average three times better performance compared to CrN
in terms of metal removal, due to the lower hardness (lower abrasive wear resistance) and
higher chemical affinity of CrN to Inconel 718. It concluded that under conditions where
thermal rather than mechanical stresses predominate, the TiAlN coating would be expected to
give better results.