ADVANCED MACHINING TOWARDS IMPROVED MACHINABILITY OF DIFFICULT-TO-CUT MATERIALS

Edited by:
A.K.M. Nurul Amin (Chief Editor)
Dr. Erry Yulian Triblas Adesta
Dr. Mohammad Yeakub Ali

IIUM PRESS
INTERNATIONAL ISLAMIC UNIVERSITY MALAYSIA
ADVANCED MACHINING
TOWARDS IMPROVED MACHINABILITY OF DIFFICULT-TO-CUT MATERIALS

Edited by:
A.K.M. Nurul Amin (Chief Editor)
Dr. Erry Yulian Triblas Adesta
Dr. Mohammad Yeakub Ali

IIUM Press
Advanced Machining

List of Contents

11 CHAPTER 11: A NEW METHOD FOR CHATTER SUPPRESSION AND IMPROVEMENT OF SURFACE ROUGHNESS IN END MILLING OF MILD STEEL 83

12 CHAPTER 12: APPLICATION OF PERMANENT ELECTROMAGNET FOR CHATTER CONTROL IN END MILLING OF MEDIUM CARBON STEEL 91

13 CHAPTER 13: APPLICATION OF PERMANENT ELECTROMAGNET FOR CHATTER CONTROL IN END MILLING OF TITANIUM ALLOY - Ti6AL4V 99

14 CHAPTER 14: CHATTER SUPPRESSION IN END MILLING OF TITANIUM ALLOY Ti6AL4V APPLYING PERMANENT MAGNET CLAMPED ADJACENT TO THE WORKPIECE 107

SECTION C: MODELING AND OPTIMIZATION IN MACHINING 117

15 CHAPTER 15: A COUPLED ARTIFICIAL NEURAL NETWORK AND RSM MODEL FOR THE PREDICTION OF CHIP SERRATION FREQUENCY IN END MILLING OF INCONEL 718 117

16 CHAPTER 16: APPLICATION OF RESPONSE SURFACE METHODOLOGY COUPLED WITH GENETIC ALGORITHM FOR SURFACE ROUGHNESS OF INCONEL 718 123

17 CHAPTER 17: DEVELOPMENT OF A MATHEMATICAL MODEL FOR THE PREDICTION OF SURFACE ROUGHNESS IN END MILLING OF STAINLESS STEEL SS 304 133

18 CHAPTER 18: DEVELOPMENT OF AN ARTIFICIAL NEURAL NETWORK ALGORITHM FOR PREDICTING THE CUTTING FORCE IN END MILLING OF INCONEL 718 ALLOY 143

19 CHAPTER 19: DEVELOPMENT OF AN ARTIFICIAL NEURAL NETWORK ALGORITHM FOR PREDICTING THE SURFACE 149

20 CHAPTER 20: DEVELOPMENT OF TOOL LIFE PREDICTION MODEL OF TIALN COATED TOOLS DURING PART C: HIGH SPEED HARD MILLING OF AISI H13 STEEL 155

21 CHAPTER 21: MODELING FOR SURFACE ROUGHNESS IN END-MILLING OF TITANIUM ALLOY Ti-6Al-4V USING UNCOATED WC INSERTS 161
CHAPTER 22: MODELING OF SURFACE ROUGHNESS DURING END MILLING OF AISI H13 HARDENED TOOL STEEL

CHAPTER 23: MODELING OF TOOL LIFE USING RESPONSE SURFACE METHODOLOGY IN HARD MILLING OF AISI D2 TOOL STEEL

CHAPTER 24: OPTIMIZATION OF SURFACE ROUGHNESS IN HIGH SPEED END MILLING OF TITANIUM ALLOY Ti-6Al-4V UNDER DRY CONDITION

CHAPTER 25: COMPARISON OF SURFACE ROUGHNESS IN END-MILLING OF TITANIUM ALLOY Ti-6Al-4V USING UNCOATED WC-CO AND PCD INSERTS THROUGH GENERATION OF MODELS

CHAPTER 26: ASSESSMENT OF PERFORMANCE OF UNCOATED AND COATED CARBIDE INSERTS IN END MILLING OF Ti-6Al-4V THROUGH MODELLING

SECTION D: CRYOGENIC AND HIGH SPEED MACHINING OF METALS AND NON METALS

CHAPTER 27: THE EFFECT OF CRYOGENIC COOLING ON MACHINABILITY OF STAINLESS STEEL DURING TURNING

CHAPTER 28: COMPARISON OF MACHINABILITY OF CERAMIC INSERT IN ROOM TEMPERATURE AND CRYOGENIC COOLING CONDITIONS DURING END MILLING INCONEL 718

CHAPTER 29: HIGH SPEED END MILLING OF SINGLE CRYSTAL SILICON SING DIAMOND COATED TOOL

CHAPTER 30: IMPLEMENTATION OF HIGH SPEED OF SILICON USING DIAMOND COATED TOOLS WITH AIR BLOWING

CHAPTER 31: ELIMINATION OF BURR FORMATION DURING END MILLING OF POLYMYETHYL METHACRYLATE (PMMA) THROUGH HIGH SPEED MACHINING

CHAPTER 32: WEAR MECHANISMS IN END MILLING OF INCONEL 718
<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>33</td>
<td>CHAPTER 33: PERFORMANCE OF UNCOATED WC-CO INSERTS IN END MILLING OF ALUMINUM SILICON CARBIDE (ALSiC)</td>
<td>247</td>
</tr>
<tr>
<td>34</td>
<td>CHAPTER 34: APPLICATION OF PCD INSERTS IN END MILLING OF ALUMINUM SILICON CARBIDE (ALSiC)</td>
<td>253</td>
</tr>
<tr>
<td>35</td>
<td>CHAPTER 35: EFFECTS OF SCRIBING WHEEL DIMENSIONS ON LCD GLASS CUTTING</td>
<td>259</td>
</tr>
</tbody>
</table>
Chapter 27

The Effect of Cryogenic Cooling on Machinability of Stainless Steel during Turning

A.K.M. Nurul Amin1, Aiman Bin Haji Mhd Jakin2, Hafiz Bin Husin3, Md. Asif Mahmud4
1,2,3,4Faculty of Engineering, International Islamic University Malaysia (IIUM)

*Corresponding author: akamin@iium.edu.my

1.0 INTRODUCTION

A high cutting temperature inherently characterizes high production machining. Such a high cutting temperature adversely affects tool life, dimensional and form accuracy and surface integrity of the product. Currently, an effort is being made to control this problem by reducing heat from the cutting zone through proper selection of machining parameters, cutting fluid application and heat resistant tools. The objective of this project is to investigate the effect of cryogenic cooling in machinability of stainless steel during turning. Cryogenic cooling is a promising new technology, which economically addresses the current processes environmental, and health, concerns. Cooling the cutting tool with liquid nitrogen (-320°F) is expected to maintain tool hardness and life. Cooling the chip makes it brittle and aids removal. Because nitrogen is an abundant atmospheric constituent and the quantities used are small, there is no unfavorable environmental effect or health impact or coolant disposal cost, and the chips are readily recycled. It was assumed that using cryogenic cooling during turning operation would discover some improvement in machinability of stainless steel by using cryogenic cooling during turning operation. Large number of research works performed in the area of metal cutting has contributed towards understanding the basic principles of improving machinability. It is therefore worthwhile to explore the possibility to strengthen the continuity of these works. This research intends to emphasize on chatter analysis to establish a correlation between chatter and machinability, which is seldom highlighted by scientists and researchers. Chatter is an unwanted phenomenon in machining due to its adverse effects on the product quality, operation cost, machining accuracy, tool life, machine-tool bearings, and machine-tool life. The term defines the self-excited violent dynamic motion between the cutting tool and work piece [1]. Chatter analysis could be another accurate, precise, effective and efficient method to analyze instantaneous cutting environment and performance. Cryogenic cooling is the cooling approach to replace conventional coolant by liquefied gas in machining process [2]. In most cases, the liquid nitrogen (LN2) is chosen because of its availability and cost. There were many research works [3-5] on the application of cryogenic cooling to improve the machinability of the hard to cut materials. Liquid nitrogen (LN2) as a cryogenic coolant has been widely investigated, especially for machining hard to cut material [6,7]. Cryogenic cooling is being looked at as a potential replacement of conventional mineral oil based coolants because the latter is being rejected on grounds on serious environmental and health problems that it causes [8]. It is therefore essential to design efficient cryogenic cooling systems for high speed machining applications of hard-to-machine materials. The impact of cryogenic cooling on chip breaking and tool wear intensity during end milling and