SECTION A: HEAT ASSISTED MACHINING

1. CHAPTER 1: INFLUENCE OF WORKPIECE PREHEATING ON CHATTER AND MACHINABILITY OF TITANIUM LOY - TI6AL4V 1

2. CHAPTER 2: MACHINABILITY IMPROVEMENT IN END OF MILLING TITANIUM ALLOY TI-6AL-4V THROUGH PREHEATING 9

3. CHAPTER 3: SOME ASPECTS OF IMPROVED MACHINABILITY IN PREHEATED MACHINING OF TITANIUM ALLOY TI-6AL-4V 19

4. CHAPTER 4: MACHINABILITY ASPECTS IN HEAT ASSISTED MACHINING OF HARDENED STEEL AISI H13 USING COATED CARBIDE TOOL 27

5. CHAPTER 5: TOOL WEAR AND SURFACE ROUGHNESS ASPECTS IN HEAT ASSISTED END MILLING OF AISI D2 HARDENED STEEL 35

6. CHAPTER 6: MODELING IN PREHEATED MACHINING OF AISI D2 HARDENED STEEL 43

7. CHAPTER 7: RELATIVE PERFORMANCES OF PREHEATING, CRYOGENIC COOLING AND HYBRID TURNING OF STAINLESS STEEL AISI 304 49

SECTION B: CHATTER AND SELECTED METHODS OF CHATTER SUPPRESSION 57

8. CHAPTER 8: ROLE OF THE FREQUENCY OF SECONDARY SERRATED TEETH IN CHATTER FORMATION DURING TURNING OF CARBON STEEL AISI 1040 AND STAINLESS STEEL 57

9. CHAPTER 9: INFLUENCE OF THE ELASTIC SYSTEM AND CUTTING PARAMETERS ON CHATTER DURING MACHINING OF MILD STEEL 65

10. CHAPTER 10: INFLUENCE OF CHATTER ON TOOL LIFE DURING END MILLING OF ALUMINIUM AND ALUMINIUM ALLOY ON VMC 75
CHAPTER 11: A NEW METHOD FOR CHATTER SUPPRESSION AND IMPROVEMENT OF SURFACE ROUGHNESS IN END MILLING OF MILD STEEL 83

CHAPTER 12: APPLICATION OF PERMANENT ELECTROMAGNET FOR CHATTER CONTROL IN END MILLING OF MEDIUM CARBON STEEL 91

CHAPTER 13: APPLICATION OF PERMANENT ELECTROMAGNET FOR CHATTER CONTROL IN END MILLING OF TITANIUM ALLOY - Ti6Al4V 99

CHAPTER 14: CHATTER SUPPRESSION IN END MILLING OF TITANIUM ALLOY Ti6Al4V APPL YING PERMANENT MAGNET CLAMPED ADJACENT TO THE WORKPIECE 107

SECTION C: MODELING AND OPTIMIZATION IN MACHINING 117

CHAPTER 15: A COUPLED ARTIFICIAL NEURAL NETWORK AND RSM MODEL FOR THE PREDICTION OF CHIP SERRATION FREQUENCY IN END MILLING OF INCONEL 718 117

CHAPTER 16: APPLICATION OF RESPONSE SURFACE METHODOLOGY COUPLED WITH GENETIC ALGORITHM FOR SURFACE ROUGHNESS OF INCONEL 718 123

CHAPTER 17: DEVELOPMENT OF A MATHEMATICAL MODEL FOR THE PREDICTION OF SURFACE ROUGHNESS IN END MILLING OF STAINLESS STEEL SS 304 133

CHAPTER 18: DEVELOPMENT OF AN ARTIFICIAL NEURAL NETWORK ALGORITHM FOR PREDICTING THE CUTTING FORCE IN END MILLING OF INCONEL 718 ALLOY 143

CHAPTER 19: DEVELOPMENT OF AN ARTIFICIAL NEURAL NETWORK ALGORITHM FOR PREDICTING THE SURFACE 149

CHAPTER 20: DEVELOPMENT OF TOOL LIFE PREDICTION MODEL OF TIN COATED TOOLS DURING PART C: HIGH SPEED HARD MILLING OF AISI H13 STEEL 155

CHAPTER 21: MODELING FOR SURFACE ROUGHNESS IN END-MILLING OF TITANIUM ALLOY Ti-6Al-4V USING UNCOATED WC INSERTS 161
<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>22</td>
<td>CHAPTER 22: MODELING OF SURFACE ROUGHNESS DURING END MILLING OF AISI H13 HARDENED TOOL STEEL</td>
<td>167</td>
</tr>
<tr>
<td>23</td>
<td>CHAPTER 23: MODELING OF TOOL LIFE USING RESPONSE SURFACE METHODOLOGY IN HARD MILLING OF AISI D2 TOOL STEEL</td>
<td>175</td>
</tr>
<tr>
<td>24</td>
<td>CHAPTER 24: OPTIMIZATION OF SURFACE ROUGHNESS IN HIGH SPEED END MILLING OF TITANIUM ALLOY Ti-6Al-4V UNDER DRY CONDITION</td>
<td>181</td>
</tr>
<tr>
<td>25</td>
<td>CHAPTER 25: COMPARISON OF SURFACE ROUGHNESS IN END-MILLING OF TITANIUM ALLOY Ti-6Al-4V USING UNCOATED WC-CO AND PCD INSERTS THROUGH GENERATION OF MODELS</td>
<td>189</td>
</tr>
<tr>
<td>26</td>
<td>CHAPTER 26: ASSESSMENT OF PERFORMANCE OF UNCOATED AND COATED CARBIDE INSERTS IN END MILLING OF Ti-6Al-4V THROUGH MODELLING</td>
<td>195</td>
</tr>
<tr>
<td></td>
<td>SECTION D: CRYOGENIC AND HIGH SPEED MACHINING OF METALS AND NON METALS</td>
<td>203</td>
</tr>
<tr>
<td>27</td>
<td>CHAPTER 27: THE EFFECT OF CRYOGENIC COOLING ON MACHINABILITY OF STAINLESS STEEL DURING TURNING</td>
<td>203</td>
</tr>
<tr>
<td>28</td>
<td>CHAPTER 28: COMPARISON OF MACHINABILITY OF CERAMIC INSERT IN ROOM TEMPERATURE AND CRYOGENIC COOLING CONDITIONS DURING END MILLING INCONEL 718</td>
<td>209</td>
</tr>
<tr>
<td>29</td>
<td>CHAPTER 29: HIGH SPEED END MILLING OF SINGLE CRYSTAL SILICON SING DIAMOND COATED TOOL</td>
<td>217</td>
</tr>
<tr>
<td>30</td>
<td>CHAPTER 30: IMPLEMENTATION OF HIGH SPEED OF SILICON USING DIAMOND COATED TOOLS WITH AIR BLOWING</td>
<td>225</td>
</tr>
<tr>
<td>31</td>
<td>CHAPTER 31: ELIMINATION OF BURR FORMATION DURING END MILLING OF POLYMETHYL METHACRYLATE (PMMA) THROUGH HIGH SPEED MACHINING</td>
<td>233</td>
</tr>
<tr>
<td>32</td>
<td>CHAPTER 32: WEAR MECHANISMS IN END MILLING OF INCONEL 718</td>
<td>239</td>
</tr>
</tbody>
</table>
33 CHAPTER 33: PERFORMANCE OF UNCOATED WC-CO INSERTS IN END MILLING OF ALUMINUM SILICON CARBIDE (ALSiC) 247

34 CHAPTER 34: APPLICATION OF PCD INSERTS IN END MILLING OF ALUMINUM SILICON CARBIDE (ALSiC) 253

35 CHAPTER 35: EFFECTS OF SCRIBING WHEEL DIMENSIONS ON LCD GLASS CUTTING 259
Chapter 23

MODELLING OF TOOL LIFE BY RESPONSE 
SURFACE METHODOLOGY IN HARD MILLING OF 
AISI D2 TOOL STEEL

LAJIS, Mohd Amri¹; A.K.M. Nurul Amin²; KARIM, Mustafizul³ & HAFIZ, Khaled⁴
¹Faculty of Mechanical and Manufacturing Engineering, UTHM, Malaysia
²³⁴Faculty of Engineering – International Islamic University Malaysia

*Corresponding author’s e-mail: akamin@iium.edu.my

1.0 INTRODUCTION

Tool life prediction is an important factor that has profound influence on the higher productivity in industrial activities. High metal removal rate is intended to reduce the manufacturing cost and operation time. The productivity in terms of machining operation and machining cost, as well as quality assurance, and the quality of the workpiece machined surface and its integrity are strongly depend on tool wear and consequently it depends on the life of the tool. Moreover, despite having the target of achieving optimum superficial finishing with the shortest possible time one must take into account the consideration of tool life, so that the complete finishing operation can be carried out with just one tool, avoiding the intermediate stops in order to change the tool due to its wear [1] Eventually, sudden failure of cutting tools lead to loss of productivity, rejection of parts and consequential economic losses [2]

There are various methodologies and strategies that were adopted by researchers in order to predict tool wear or tool life in milling and turning. Response surface methodology (RSM) which is classified into designed experiments approach seems to be the most wide-spread methodology for the surface roughness prediction. RSM is an important methodology used in developing new processes, optimizing their performance, and improving the design and/or formulation of new products. [3] It is a dynamic and foremost important tool of design of experiment (DOE), wherein the relationship between responses of a process with its input decision variables is mapped to achieve the objective of maximization or minimization of the response properties.

Many researchers have used RSM for their experimental design and analysis of the results in end milling, but very few of them were engaged in machining hard material which is commonly known as hard milling. Vivancos [4] presented a model for the prediction of surface roughness in high-speed side milling of hardened die steels. Palanisamy et al. [2] predicted the response variable tool wear based on DOE combined with RSM technique in a universal milling machine on AISI 1020 steel using carbide insert. The development of a surface roughness model for end milling EN32 casehardening carbon steel (160 BHN steel) using design of experiments and RSM was discussed by Mansor & Abdalla [5] As has been