ADVANCED MACHINING TOWARDS IMPROVED MACHINABILITY OF DIFFICULT-TO-CUT MATERIALS

Edited by: A.K.M. Nurul Amin (Chief Editor) Dr. Erry Yulian Triblas Adesta Dr. Mohammad Yeakub Ali

IIUM PRESS

INTERNATIONAL ISLAMIC UNIVERSITY MALAYSIA

ADVANCED MACHINING TOWARDS IMPROVED MACHINABILITY OF DIFFICULT-TO-CUT MATERIALS

Edited by: A.K.M. Nurul Amin (Chief Editor) Dr. Erry Yulian Triblas Adesta Dr. Mohammad Yeakub Ali

Published by: IIUM Press International Islamic University Malaysia

First Edition, 2011 ©IIUM Press, IIUM

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise, without any prior written permission of the publisher.

Perpustakaan Negara Malaysia

Cataloguing-in-Publication Data

Advanced Machining Towards Improved Machinability of Difficult-To-Cut Materials: A.K.M. Nurul Amin, Erry Yulian Triblas Adesta & Mohammad Yeakub Ali

ISBN: 978-967-418-175-8

Member of Majlis Penerbitan Ilmiah Malaysia – MAPIM (Malaysian Scholarly Publishing Council)

Printed by:

HUM PRINTING SDN.BHD.

No. 1, Jalan Industri Batu Caves 1/3
Taman Perindustrian Batu Caves
Batu Caves Centre Point
68100 Batu Caves
Selangor Darul Ehsan

Tel: +603-6188 1542 / 44 / 45 Fax: +603-6188 1543 EMAIL: iiumprinting@yahoo.com

		Dist of Contents
SEC	CTION A: HEAT ASSISTED MACHINING	1
1.	CHAPTER 1: INFLUENCE OF WORKPIECE PREHEATING ON CHATTER AND MACHINABILITY OF TITANIUM LOY - TIGA	AL4V 1
2.	CHAPTER 2: MACHINABILITY IMPROVEMENT IN END OF MILLING TITANIUM ALLOY TI-6AL-4V THROUGH PREHEATING	9
3.	CHAPTER 3: SOME ASPECTS OF IMPROVED MACHINABILITY PREHEATED MACHININING OF TITANIUM ALLOY TI-6AL-4V	IN 19
4.	CHAPTER 4: MACHINABILITY ASPECTS IN HEAT ASSISTED MACHINING OF HARDENED STEEL AISI H13 USING COATED CARBIDE TOOL	27
5	CHAPTER 5: TOOL WEAR AND SURFACE ROUGHNESS ASPECTS IN HEAT ASSISTED END MILLING OF AISI D2 HARDENED STEEL	35
6	CHAPTER 6: MODELING IN PREHEATED MACHINING OF AISI HARDENED STEEL	D2
		43
7	CHAPTER 7: RELATIVE PERFORMANCES OF PREHEATING, CRYOGENIC COOLING AND HYBRID TURNING OF STAINLESS STEEL AISI 304	49
SEC	CTION B: CHATTER AND SELECTED METHODS OF	
	CHATTER SUPPRESSION	57
8	CHAPTER 8: ROLE OF THE FREQUENCY OF SECONDARY SERRATED TEETH IN CHATTER FORMATION DURING TURNIS OF CARBON STEEL AISI 1040 AND STAINLESS STEEL	NG 57
9	CHAPTER 9: INFLUENCE OF THE ELASTIC SYSTEM AND CUTTING PARAMETERS ON CHATTER DURING MACHINING OF MILD STEEL	65
10	CHAPTER 10: INFLUENCE OF CHATTER ON TOOL LIFE DURING END MILLING OF ALUMINIUM AND ALUMINIUM	
	ALLOY ON VMC	75

	Advanced Machining	List of Contents
11	CHAPTER 11: A NEW METHOD FOR CHATTER SUPPRESSION AND IMPROVEMENT OF SURFACE ROUGHNESS IN END MILLING OF MILD STEEL	83
12	CHAPTER 12: APPLICATION OF PERMANENT ELECTROMA GNET FOR CHATTER CONTROL IN END MILLING OF MEDIUM CARBON STEEL	91
13	CHAPTER 13: APPLICATION OF PERMANENT ELECTROMA GNET FOR CHATTER CONTROL IN END MILLING OF TITANIUM ALLOY - TI6AL4V	99
14	CHAPTER 14: CHATTER SUPPRESSION IN END MILLING OF TITANIUM ALLOY TI6AL4V APPLYING PERMANENT MAGNET CLAMPED ADJACENT TO THE WORKPIECE	107
SE(CTION C: MODELING AND OPTIMIZATION IN MACHINING	117
15	CHAPTER 15: A COUPLED ARTIFICIAL NEURAL NETWORK AND RSM MODEL FOR THE PREDICTION OF CHIP SERRATION FREQUENCY IN END MILLING OF INCONEL 718	117
16	CHAPTER 16: APPLICATION OF RESPONSE SURFACE METHODOLOGY COUPLED WITH GENETIC ALGORITHM FOR SURFACE ROUGHNESS OF INCONEL 718	123
17	CHAPTER 17: DEVELOPMENT OF A MATHEMATICAL MODEL FOR THE PREDICTION OF SURFACE ROUGHNESS IN END MILLING OF STAINLESS STEEL SS 304	133
18	CHAPTER 18: DEVELOPMENT OF AN ARTIFICIAL NEURAL NETWORK ALGORITHM FOR PREDICTING THE CUTTING FORCE IN END MILLING OF INCONEL 718 ALL	OY 143
19	CHAPTER 19: DEVELOPMENT OF AN ARTIFICIAL NEURAL NETWORK ALGORITHM FOR PREDICTING THE SURFACE	149

ii

CHAPTER 20: DEVELOPMENT OF TOOL LIFE

UNCOATED WC INSERTS

PREDICTION MODEL OF TIAIN COATED TOOLS DURING

PART C: HIGH SPEED HARD MILLING OF AISI H13 STEEL

CHAPTER 21: MODELING FOR SURFACE ROUGHNESS IN END-MILLING OF TITANIUM ALLOY Ti-6Al-4V USING

20

21

155

161

Advanced Machining

r ·	c	a
List	01	Contents

		Bisi of Contents
22	CHAPTER 22: MODELING OF SURFACE ROUGHNESS DURING END MILLING OF AISI H13 HARDENED TOOL STEEL	167
23	CHAPTER 23: MODELING OF TOOL LIFE USING RESPONSE SURFACE METHODOLOGY IN HARD MILLING OF AISI D2 TOOL STEEL	175
24	CHAPTER 24: OPTIMIZATION OF SURFACE ROUGHNESS IN HIGH SPEED END MILLING OF TITANIUM ALLOY Ti-6AI-4V UNDER DRY CONDITION	181
25	CHAPTER 25: COMPARISON OF SURFACE ROUGHNESS IN END-MILLING OF TITANIUM ALLOY TI-6AL-4V USING UNCOATED WC-CO AND PCD INSERTS THROUGH GENERATION OF MODELS	189
26	CHAPTER 26: ASSESSMENT OF PERFORMANCE OF UNCOATED AND COATED CARBIDE INSERTS IN END MILLING OF TI–6AL–4V THROUGH MODELLING	195
	CTION D: CRYOGENIC AND HIGH SPEED MACHINING OF TALS AND NON METALS	203
27	CHAPTER 27: THE EFFECT OF CRYOGENIC COOLING ON MACHINABILITY OF STAINLESS STEEL DURING TURNING	203
28	CHAPTER 28: COMPARISON OF MACHINABILITY OF CERAMIC INSERT IN ROOM TEMPERATURE AND CRYOGENIC COOLING CONDITIONS DURING END MILLING INCONEL 718	209
29	CHAPTER 29: HIGH SPEED END MILLING OF SINGLE CRYSTAL SILICON SING DIAMOND COATED TOOL	L 217
30	CHAPTER 30: IMPLEMENTATION OF HIGH SPEED OF SILICON USING DIAMOND COATED TOOLS WITH AIR BLOWIN	IG 225
31	CHAPTER 31: ELIMINATION OF BURR FORMATION DURING END MILLING OF POLYMETHYL METHACRYLATE (PMMA) THROUGH HIGH SPEED MACHINING	233
32	CHAPTER 32: WEAR MECHANISMS IN END MILLING OF INCONEL 718	239

Advanced Machining

		List of Contents
33	CHAPTER 33: PERFORMANCE OF UNCOATED WC-CO INSERTS IN END MILLING OF ALUMINUM SILICON	
	CARBIDE (ALSiC)	247
34	CHAPTER 34: APPLICATION OF PCD INSERTS IN END MILLING OF ALUMINUM SILICON CARBIDE (ALSIC)	253
35	CHAPTER 35: EFFECTS OF SCRIBING WHEEL DIMENSIONS ON LCD GLASS CUTTING	259

Chapter 21

Modeling for Surface Roughness in End-Milling of Titanium Alloy Ti-6Al-4V Using Uncoated WC-Co Inserts

A.K.M. Nurul Amin^{1*}, Turnad L. Ginta¹, M. H. Ishtiyaq¹ Department of Manufacturing and Materials Engineering, International Islamic University Malaysia, PO. Box 10, 50728 Kuala Lumpur, Malaysia

*e-mail address of Corresponding author: <u>akamin@iium.edu.my</u>

1.0 INTRODUCTION

Titanium alloys are widely known as difficult to cut materials, especially at higher cutting speeds, due to their several inherent properties. Among all titanium alloys, Ti-6Al-4V is most widely used, so it has been chosen as the workpiece material in this study. Siekmann [1] suggested that machining of titanium and its alloys would always be a problem, no matter what techniques are employed to transform this metal into chips. When machining Ti-6Al-4V, conventional tools wear rapidly because the poor thermal conductivity of titanium alloys resulting in higher cutting temperature closer to the cutting edge. There also exists strong adhesion between the tool and workpiece material [2]. Since the performance of conventional tools is poor in machining Ti-6Al-4V, a number of newly evolved tool materials, such as cubic boron nitride (CBN) and polycrystalline diamond (PCD), are being considered to achieve high-speed milling [3].

In order to establish an adequate functional relationship between the responses (such as surface roughness, cutting force, tool life/wear) and the cutting parameters (cutting speed, feed, and depth of cut), a large number of tests are needed for each and every combination of cutting tool and work piece materials. This increases the total number of tests and as a result the experimentation cost also increases. Response Surface Methodology (RSM), as a group of mathematical and statistical techniques, is useful for modeling the relationship between the input parameters (cutting conditions) and the output variables. RSM saves cost and time by reducing the number of experiments required. A machinability model may be defined as a functional relationship between the input of independent cutting variables (speed, feed, depth of cut) and the output known as responses (tool life, surface roughness, cutting force, etc) of a machining process [4].

Response surface methodology (RSM) is a combination of experimental and regression analysis and statistical inference. RSM is a dynamic and foremost important tool of design of experiment (DOE), wherein the relationship between response(s) of a process with its input decision variables is mapped to achieve the objective of maximization or minimization of the response properties [5-6]. Many machining researchers have used response surface methodology to design their experiments and assess results. Kaye et al [7] used response surface methodology in predicting tool flank wear using spindle speed change. A unique