ADVANCED MACHINING TOWARDS IMPROVED MACHINABILITY OF DIFFICULT-TO-CUT MATERIALS

Edited by:
A.K.M. Nurul Amin (Chief Editor)
Dr. Erry Yulian Triblas Adesta
Dr. Mohammad Yeakub Ali

IIUM PRESS
INTERNATIONAL ISLAMIC UNIVERSITY MALAYSIA

ISBN: 978-967-418-175-8

Member of Majlis Penerbitan Ilmiah Malaysia – MAPIM
(Malaysian Scholarly Publishing Council)

Printed by:
IIUM PRINTING SDN.BHD.
No. 1, Jalan Industri Batu Caves 1/3
Taman Perindustrian Batu Caves
Batu Caves Centre Point
68100 Batu Caves
Selangor Darul Ehsan
Tel: +603-6188 1542 / 44 / 45 Fax: +603-6188 1543
EMAIL: iiumprinting@yahoo.com
Advanced Machining

List of Contents

SECTION A: HEAT ASSISTED MACHINING

1. **CHAPTER 1: INFLUENCE OF WORKPIECE PREHEATING ON CHATTER AND MACHINABILITY OF TITANIUM LOY - Ti6Al4V**
 1

2. **CHAPTER 2: MACHINABILITY IMPROVEMENT IN END OF MILLING TITANIUM ALLOY Ti-6Al-4V THROUGH PREHEATING**
 9

3. **CHAPTER 3: SOME ASPECTS OF IMPROVED MACHINABILITY IN PREHEATED MACHINING OF TITANIUM ALLOY Ti-6Al-4V**
 19

4. **CHAPTER 4: MACHINABILITY ASPECTS IN HEAT ASSISTED MACHINING OF HARDENED STEEL AISI H13 USING COATED CARBIDE TOOL**
 27

5. **CHAPTER 5: TOOL WEAR AND SURFACE ROUGHNESS ASPECTS IN HEAT ASSISTED END MILLING OF AISI D2 HARDENED STEEL**
 35

6. **CHAPTER 6: MODELING IN PREHEATED MACHINING OF AISI D2 HARDENED STEEL**
 43

7. **CHAPTER 7: RELATIVE PERFORMANCES OF PREHEATING, CRYOGENIC COOLING AND HYBRID TURNING OF STAINLESS STEEL AISI 304**
 49

SECTION B: CHATTER AND SELECTED METHODS OF CHATTER SUPPRESSION

8. **CHAPTER 8: ROLE OF THE FREQUENCY OF SECONDARY SERRATED TEETH IN CHATTER FORMATION DURING TURNING OF CARBON STEEL AISI 1040 AND STAINLESS STEEL**
 57

9. **CHAPTER 9: INFLUENCE OF THE ELASTIC SYSTEM AND CUTTING PARAMETERS ON CHATTER DURING MACHINING OF MILD STEEL**
 65

10. **CHAPTER 10: INFLUENCE OF CHATTER ON TOOL LIFE DURING END MILLING OF ALUMINIUM AND ALUMINIUM ALLOY ON VMC**
 75
11 CHAPTER 11: A NEW METHOD FOR CHATTER SUPPRESSION AND IMPROVEMENT OF SURFACE ROUGHNESS IN END MILLING OF MILD STEEL 83

12 CHAPTER 12: APPLICATION OF PERMANENT ELECTROMAGNET FOR CHATTER CONTROL IN END MILLING OF MEDIUM CARBON STEEL 91

13 CHAPTER 13: APPLICATION OF PERMANENT ELECTROMAGNET FOR CHATTER CONTROL IN END MILLING OF TITANIUM ALLOY - Ti6Al4V 99

14 CHAPTER 14: CHATTER SUPPRESSION IN END MILLING OF TITANIUM ALLOY Ti6Al4V APPLYING PERMANENT MAGNET CLAMPED ADJACENT TO THE WORKPIECE 107

SECTION C: MODELING AND OPTIMIZATION IN MACHINING 117

15 CHAPTER 15: A COUPLED ARTIFICIAL NEURAL NETWORK AND RSM MODEL FOR THE PREDICTION OF CHIP SERRATION FREQUENCY IN END MILLING OF INCONEL 718 117

16 CHAPTER 16: APPLICATION OF RESPONSE SURFACE METHODOLOGY COUPLED WITH GENETIC ALGORITHM FOR SURFACE ROUGHNESS OF INCONEL 718 123

17 CHAPTER 17: DEVELOPMENT OF A MATHEMATICAL MODEL FOR THE PREDICTION OF SURFACE ROUGHNESS IN END MILLING OF STAINLESS STEEL SS 304 133

18 CHAPTER 18: DEVELOPMENT OF AN ARTIFICIAL NEURAL NETWORK ALGORITHM FOR PREDICTING THE CUTTING FORCE IN END MILLING OF INCONEL 718 ALLOY 143

19 CHAPTER 19: DEVELOPMENT OF AN ARTIFICIAL NEURAL NETWORK ALGORITHM FOR PREDICTING THE SURFACE 149

20 CHAPTER 20: DEVELOPMENT OF TOOL LIFE PREDICTION MODEL OF TITAN COATED TOOLS DURING PART C: HIGH SPEED HARD MILLING OF AISI H13 STEEL 155

21 CHAPTER 21: MODELING FOR SURFACE ROUGHNESS IN END-MILLING OF TITANIUM ALLOY Ti-6Al-4V USING UNCOATED WC INSERTS 161
CHAPTER 22: MODELING OF SURFACE ROUGHNESS DURING END MILLING OF AISI H13 HARDENED TOOL STEEL 167

CHAPTER 23: MODELING OF TOOL LIFE USING RESPONSE SURFACE METHODOLOGY IN HARD MILLING OF AISI D2 TOOL STEEL 175

CHAPTER 24: OPTIMIZATION OF SURFACE ROUGHNESS IN HIGH SPEED END MILLING OF TITANIUM ALLOY Ti-6Al-4V UNDER DRY CONDITION 181

CHAPTER 25: COMPARISON OF SURFACE ROUGHNESS IN END-MILLING OF TITANIUM ALLOY Ti-6Al-4V USING UNCOATED WC-CO AND PCD INSERTS THROUGH GENERATION OF MODELS 189

CHAPTER 26: ASSESSMENT OF PERFORMANCE OF UNCOATED AND COATED CARBIDE INSERTS IN END MILLING OF Ti-6Al-4V THROUGH MODELLING 195

SECTION D: CRYOGENIC AND HIGH SPEED MACHINING OF METALS AND NON METALS 203

CHAPTER 27: THE EFFECT OF CRYOGENIC COOLING ON MACHINABILITY OF STAINLESS STEEL DURING TURNING 203

CHAPTER 28: COMPARISON OF MACHINABILITY OF CERAMIC INSERT IN ROOM TEMPERATURE AND CRYOGENIC COOLING CONDITIONS DURING END MILLING INCONEL 718 209

CHAPTER 29: HIGH SPEED END MILLING OF SINGLE CRYSTAL SILICON SING DIAMOND COATED TOOL 217

CHAPTER 30: IMPLEMENTATION OF HIGH SPEED OF SILICON USING DIAMOND COATED TOOLS WITH AIR BLOWING 225

CHAPTER 31: ELIMINATION OF BURR FORMATION DURING END MILLING OF POLYMETHYL METHACRYLATE (PMMA) THROUGH HIGH SPEED MACHINING 233

CHAPTER 32: WEAR MECHANISMS IN END MILLING OF INCONEL 718 239
Advanced Machining

33 CHAPTER 33: PERFORMANCE OF UNCOATED WC-CO INSERTS IN END MILLING OF ALUMINUM SILICON CARBIDE (ALSiC) 247

34 CHAPTER 34: APPLICATION OF PCD INSERTS IN END MILLING OF ALUMINUM SILICON CARBIDE (ALSiC) 253

35 CHAPTER 35: EFFECTS OF SCRIBING WHEEL DIMENSIONS ON LCD GLASS CUTTING 259
Chapter 19

Artificial Neural Network Algorithm for Predicting the Surface Roughness in End Milling of Inconel 718 Alloy

Mohammad Ishtiyaq Hossain, A.K.M. Nurul Amin, Anayet U Patwari
International Islamic University Malaysia (IIUM), Kuala Lumpur, Malaysia
Email address of contacting author: akamin@iium.edu.my

1.0 INTRODUCTION
Surface roughness is one of the important factors for evaluating workpiece quality during the machining process because the quality of surface roughness affects the functional characteristics of the workpiece such as compatibility, fatigue resistance and surface friction. The factors that affect the surface roughness during the end milling process include tool geometry, feed rate, depth of cut and cutting speed. Several researchers have studied the end milling process in the recent years. The researchers also used response surface methodology (RSM) to explore the effect of cutting parameters as cutting speed, feed rate and axial depth of cut. Alauddin et al. [1] developed a mathematical model to predict the surface roughness of steel after end milling. The prediction model was expressed via cutting speed, feed rate and depth of cut. Fuh and Hwang [2] used RSM to construct a model that can predict the milling force in end milling operations. But as the machining process is nonlinear and time-dependent, it is difficult for the traditional identification methods to provide an accurate model. Compared to traditional computing methods, the artificial neural networks (ANNs) are robust and global. ANNs have the characteristics of universal approximation, parallel distributed processing, hardware implementation, learning and adaptation, and multivariable systems [3]. ANNs have been extensively applied in modeling many metal-cutting operations such as turning, milling, and drilling [4-5]. However, this study was inspired by the very limited work on the application of ANNs in modeling the relationship between cutting conditions and the surface roughness during high-speed end milling of nickel-based, Inconel 718 alloy.

2.0 ARTIFICIAL NEURAL NETWORK DESIGN
Supervised neural network was developed in this study for the prediction of surface roughness in end milling process and its performance was tested. The network was back propagation neural network (BP) with log-sigmoid transfer function in hidden layers and linear transfer functions in the output layers. The neural network architecture used in this study is shown in Figure1. It was designed using MATLAB Neural Network Toolbox [6].