ADVANCED MACHINING
TOWARDS IMPROVED MACHINABILITY OF DIFFICULT-TO-CUT MATERIALS

Edited by:
A.K.M. Nurul Amin (Chief Editor)
Dr. Erry Yulian Triblas Adesta
Dr. Mohammad Yeakub Ali

IIUM Press

ISBN: 978-967-418-175-8

Member of Majlis Penerbitan Ilmiah Malaysia – MAPIM (Malaysian Scholarly Publishing Council)

Printed by:
IIUM PRINTING SDN.BHD.
No. 1, Jalan Industri Batu Caves 1/3
Taman Perindustrian Batu Caves
Batu Caves Centre Point
68100 Batu Caves
Selangor Darul Ehsan
Tel: +603-6188 1542 / 44 / 45 Fax: +603-6188 1543
EMAIL: iiumpublishing@yahoo.com
Advanced Machining

List of Contents

SECTION A: HEAT ASSISTED MACHINING

1. CHAPTER 1: INFLUENCE OF WORKPIECE PREHEATING ON CHATTER AND MACHINABILITY OF TITANIUM LOY - Ti6Al4V
 1

2. CHAPTER 2: MACHINABILITY IMPROVEMENT IN END OF MILLING TITANIUM ALLOY Ti-6Al-4V THROUGH PREHEATING
 9

3. CHAPTER 3: SOME ASPECTS OF IMPROVED MACHINABILITY IN PREHEATED MACHINING OF TITANIUM ALLOY Ti-6Al-4V
 19

4. CHAPTER 4: MACHINABILITY ASPECTS IN HEAT ASSISTED MACHINING OF HARDENED STEEL AISI H13 USING COATED CARBIDE TOOL
 27

5. CHAPTER 5: TOOL WEAR AND SURFACE ROUGHNESS ASPECTS IN HEAT ASSISTED END MILLING OF AISI D2 HARDENED STEEL
 35

6. CHAPTER 6: MODELING IN PREHEATED MACHINING OF AISI D2 HARDENED STEEL
 43

7. CHAPTER 7: RELATIVE PERFORMANCES OF PREHEATING, CRYOGENIC COOLING AND HYBRID TURNING OF STAINLESS STEEL AISI 304
 49

SECTION B: CHATTER AND SELECTED METHODS OF CHATTER SUPPRESSION

8. CHAPTER 8: ROLE OF THE FREQUENCY OF SECONDARY SERRATED TEETH IN CHATTER FORMATION DURING TURNING OF CARBON STEEL AISI 1040 AND STAINLESS STEEL
 57

9. CHAPTER 9: INFLUENCE OF THE ELASTIC SYSTEM AND CUTTING PARAMETERS ON CHATTER DURING MACHINING OF MILD STEEL
 65

10. CHAPTER 10: INFLUENCE OF CHATTER ON TOOL LIFE DURING END MILLING OF ALUMINIUM AND ALUMINIUM ALLOY ON VMC
 75
Advanced Machining

List of Contents

11 CHAPTER 11: A NEW METHOD FOR CHATTER SUPPRESSION AND IMPROVEMENT OF SURFACE ROUGHNESS IN END MILLING OF MILD STEEL 83

12 CHAPTER 12: APPLICATION OF PERMANENT ELECTROMAGNET FOR CHATTER CONTROL IN END MILLING OF MEDIUM CARBON STEEL 91

13 CHAPTER 13: APPLICATION OF PERMANENT ELECTROMAGNET FOR CHATTER CONTROL IN END MILLING OF TITANIUM ALLOY - Ti6Al4V 99

14 CHAPTER 14: CHATTER SUPPRESSION IN END MILLING OF TITANIUM ALLOY Ti6Al4V APPLYING PERMANENT MAGNET CLAMPED ADJACENT TO THE WORKPIECE 107

SECTION C: MODELING AND OPTIMIZATION IN MACHINING 117

15 CHAPTER 15: A COUPLED ARTIFICIAL NEURAL NETWORK AND RSM MODEL FOR THE PREDICTION OF CHIP SERRATION FREQUENCY IN END MILLING OF INCONEL 718 117

16 CHAPTER 16: APPLICATION OF RESPONSE SURFACE METHODOLOGY COUPLED WITH GENETIC ALGORITHM FOR SURFACE ROUGHNESS OF INCONEL 718 123

17 CHAPTER 17: DEVELOPMENT OF A MATHEMATICAL MODEL FOR THE PREDICTION OF SURFACE ROUGHNESS IN END MILLING OF STAINLESS STEEL SS 304 133

18 CHAPTER 18: DEVELOPMENT OF AN ARTIFICIAL NEURAL NETWORK ALGORITHM FOR PREDICTING THE CUTTING FORCE IN END MILLING OF INCONEL 718 ALLOY 143

19 CHAPTER 19: DEVELOPMENT OF AN ARTIFICIAL NEURAL NETWORK ALGORITHM FOR PREDICTING THE SURFACE 149

20 CHAPTER 20: DEVELOPMENT OF TOOL LIFE PREDICTION MODEL OF TIALN COATED TOOLS DURING PART C: HIGH SPEED HARD MILLING OF AISI H13 STEEL 155

21 CHAPTER 21: MODELING FOR SURFACE ROUGHNESS IN END-MILLING OF TITANIUM ALLOY Ti-6Al-4V USING UNCOATED WC INSERTS 161
CHAPTER 22: MODELING OF SURFACE ROUGHNESS DURING END MILLING OF AISI H13 HARDENED TOOL STEEL

CHAPTER 23: MODELING OF TOOL LIFE USING RESPONSE SURFACE METHODOLOGY IN HARD MILLING OF AISI D2 TOOL STEEL

CHAPTER 24: OPTIMIZATION OF SURFACE ROUGHNESS IN HIGH SPEED END MILLING OF TITANIUM ALLOY Ti-6Al-4V UNDER DRY CONDITION

CHAPTER 25: COMPARISON OF SURFACE ROUGHNESS IN END-MILLING OF TITANIUM ALLOY Ti-6Al-4V USING UNCOATED WC-CO AND PCD INSERTS THROUGH GENERATION OF MODELS

CHAPTER 26: ASSESSMENT OF PERFORMANCE OF UNCOATED AND COATED CARBIDE INSERTS IN END MILLING OF Ti-6Al-4V THROUGH MODELLING

SECTION D: CRYOGENIC AND HIGH SPEED MACHINING OF METALS AND NON METALS

CHAPTER 27: THE EFFECT OF CRYOGENIC COOLING ON MACHINABILITY OF STAINLESS STEEL DURING TURNING

CHAPTER 28: COMPARISON OF MACHINABILITY OF CERAMIC INSERT IN ROOM TEMPERATURE AND CRYOGENIC COOLING CONDITIONS DURING END MILLING INCONEL 718

CHAPTER 29: HIGH SPEED END MILLING OF SINGLE CRYSTAL SILICON SING DIAMOND COATED TOOL

CHAPTER 30: IMPLEMENTATION OF HIGH SPEED OF SILICON USING DIAMOND COATED TOOLS WITH AIR BLOWING

CHAPTER 31: ELIMINATION OF BURR FORMATION DURING END MILLING OF POLYMETHYL METHACRYLATE (PMMA) THROUGH HIGH SPEED MACHINING

CHAPTER 32: WEAR MECHANISMS IN END MILLING OF INCONEL 718
<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>33</td>
<td>CHAPTER 33: PERFORMANCE OF UNCOATED WC-Co INSERTS IN END MILLING OF ALUMINUM SILICON CARBIDE (ALSiC)</td>
<td>247</td>
</tr>
<tr>
<td>34</td>
<td>CHAPTER 34: APPLICATION OF PCD INSERTS IN END MILLING OF ALUMINUM SILICON CARBIDE (ALSiC)</td>
<td>253</td>
</tr>
<tr>
<td>35</td>
<td>CHAPTER 35: EFFECTS OF SCRIBING WHEEL DIMENSIONS ON LCD GLASS CUTTING</td>
<td>259</td>
</tr>
</tbody>
</table>
Development of an Artificial Neural Network Algorithm for Predicting the Cutting Force in End Milling of Inconel 718 Alloy

Mohammad Ishfiyaq Hossain1*, A.K.M. Nurul Amin1, Anayet U Patwari1
1Faculty of Engineering - International Islamic University Malaysia (IIUM)

*e-mail address of corresponding author: akamin@iium.edu.my

1.0 INTRODUCTION

To predict the required cutting force is necessary to realize the potentials of difficult-to-cut materials and get better efficiency. Cutting force is a critical and important target while machining because the change of it will affect surface finish, tool wear, vibration etc. The forces that are developed during the milling process can directly or indirectly measure/estimate process parameters of end milling such as, tool life, tool wear, surface finish etc. For the instance, excessive cutting forces generally result in low product quality while small cutting forces often indicate low machining efficiency [1]. Therefore controlling these forces is of vital importance.

Because of its paramount significance, researchers have been trying to develop mathematical models that would predict the cutting forces based on the geometry and physical characteristics of the process. A.S. Mohruni et al [2] developed the cutting force models where the primary machining parameters such as cutting speed, feed and radial rake angle were used as independent variables for factorial design of experiment coupled with response surface methodology (RSM). Kuang-hua Fuh et al proposed a predicted milling force model for the end milling operation. In that study, the spindle rotation, feed, axial and radial depth of cut are considered as the affecting factors and an orthogonal rotatable central composite design and the response surface methodology were used to construct the model [3]. Such prediction could then be used to optimize the process. Nonetheless, due to its complexity, the milling process still poses a challenge to the modeling and simulation research effort. In fact, most of the research works reported pertained to this are based on either analytical or semi-empirical approaches, has in general shown only limited levels of accuracy and/or generality.

ANN offers an alternative way to simulate complex and ill defined problems. As the machining process is nonlinear and time-dependent, it is difficult for the traditional identification methods to provide an accurate model. Compared to traditional computing methods, the artificial neural network (ANN) is robust and global. ANN has the characteristics of universal approximation, parallel distributed processing, hardware implementation, learning and adaptation, and multivariable systems. Because of this, ANN is