ADVANCED MACHINING
TOWARDS IMPROVED MACHINABILITY OF DIFFICULT-TO-CUT MATERIALS

Edited by:
A.K.M. Nurul Amin (Chief Editor)
Dr. Erry Yulian Triblas Adesta
Dr. Mohammad Yeakub Ali

IIUM Press
Advanced Machining

List of Contents

SECTION A: HEAT ASSISTED MACHINING

1. CHAPTER 1: INFLUENCE OF WORKPIECE PREHEATING ON CHATTER AND MACHINABILITY OF TITANIUM LOY - Ti6Al4V

2. CHAPTER 2: MACHINABILITY IMPROVEMENT IN END OF MILLING TITANIUM ALLOY Ti-6Al-4V THROUGH PREHEATING

3. CHAPTER 3: SOME ASPECTS OF IMPROVED MACHINABILITY IN PREHEATED MACHINING OF TITANIUM ALLOY Ti-6Al-4V

4. CHAPTER 4: MACHINABILITY ASPECTS IN HEAT ASSISTED MACHINING OF HARDENED STEEL AISI H13 USING COATED CARBIDE TOOL

5. CHAPTER 5: TOOL WEAR AND SURFACE ROUGHNESS ASPECTS IN HEAT ASSISTED END MILLING OF AISI D2 HARDENED STEEL

6. CHAPTER 6: MODELING IN PREHEATED MACHINING OF AISI D2 HARDENED STEEL

7. CHAPTER 7: RELATIVE PERFORMANCES OF PREHEATING, CRYOGENIC COOLING AND HYBRID TURNING OF STAINLESS STEEL AISI 304

SECTION B: CHATTER AND SELECTED METHODS OF CHATTER SUPPRESSION

8. CHAPTER 8: ROLE OF THE FREQUENCY OF SECONDARY SERRATED TEETH IN CHATTER FORMATION DURING TURNING OF CARBON STEEL AISI 1040 AND STAINLESS STEEL

9. CHAPTER 9: INFLUENCE OF THE ELASTIC SYSTEM AND CUTTING PARAMETERS ON CHATTER DURING MACHINING OF MILD STEEL

10. CHAPTER 10: INFLUENCE OF CHATTER ON TOOL LIFE DURING END MILLING OF ALUMINIUM AND ALUMINIUM ALLOY ON VMC

i
Advanced Machining

List of Contents

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>11</td>
<td>CHAPTER 11: A NEW METHOD FOR CHATTER SUPPRESSION AND IMPROVEMENT OF SURFACE ROUGHNESS IN END MILLING OF MILD STEEL</td>
<td>83</td>
</tr>
<tr>
<td>12</td>
<td>CHAPTER 12: APPLICATION OF PERMANENT ELECTROMAGNET FOR CHATTER CONTROL IN END MILLING OF MEDIUM CARBON STEEL</td>
<td>91</td>
</tr>
<tr>
<td>13</td>
<td>CHAPTER 13: APPLICATION OF PERMANENT ELECTROMAGNET FOR CHATTER CONTROL IN END MILLING OF TITANIUM ALLOY - Ti6Al4V</td>
<td>99</td>
</tr>
<tr>
<td>14</td>
<td>CHAPTER 14: CHATTER SUPPRESSION IN END MILLING OF TITANIUM ALLOY Ti6Al4V APPLYING PERMANENT MAGNET CLAMPED ADJACENT TO THE WORKPIECE</td>
<td>107</td>
</tr>
</tbody>
</table>

SECTION C: MODELING AND OPTIMIZATION IN MACHINING

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>15</td>
<td>CHAPTER 15: A COUPLED ARTIFICIAL NEURAL NETWORK AND RSM MODEL FOR THE PREDICTION OF CHIP SERRATION FREQUENCY IN END MILLING OF INCONEL 718</td>
<td>117</td>
</tr>
<tr>
<td>16</td>
<td>CHAPTER 16: APPLICATION OF RESPONSE SURFACE METHODOLOGY COUPLED WITH GENETIC ALGORITHM FOR SURFACE ROUGHNESS OF INCONEL 718</td>
<td>123</td>
</tr>
<tr>
<td>17</td>
<td>CHAPTER 17: DEVELOPMENT OF A MATHEMATICAL MODEL FOR THE PREDICTION OF SURFACE ROUGHNESS IN END MILLING OF STAINLESS STEEL SS 304</td>
<td>133</td>
</tr>
<tr>
<td>18</td>
<td>CHAPTER 18: DEVELOPMENT OF AN ARTIFICIAL NEURAL NETWORK ALGORITHM FOR PREDICTING THE CUTTING FORCE IN END MILLING OF INCONEL 718 ALLOY</td>
<td>143</td>
</tr>
<tr>
<td>19</td>
<td>CHAPTER 19: DEVELOPMENT OF AN ARTIFICIAL NEURAL NETWORK ALGORITHM FOR PREDICTING THE SURFACE</td>
<td>149</td>
</tr>
<tr>
<td>20</td>
<td>CHAPTER 20: DEVELOPMENT OF TOOL LIFE PREDICTION MODEL OF TIALN COATED TOOLS DURING PART C: HIGH SPEED HARD MILLING OF AISI H13 STEEL</td>
<td>155</td>
</tr>
<tr>
<td>21</td>
<td>CHAPTER 21: MODELING FOR SURFACE ROUGHNESS IN END-MILLING OF TITANIUM ALLOY Ti-6Al-4V USING UNCOATED WC INSERTS</td>
<td>161</td>
</tr>
</tbody>
</table>
CHAPTER 22: MODELING OF SURFACE ROUGHNESS DURING END MILLING OF AISI H13 HARDENED TOOL STEEL

CHAPTER 23: MODELING OF TOOL LIFE USING RESPONSE SURFACE METHODOLOGY IN HARD MILLING OF AISI D2 TOOL STEEL

CHAPTER 24: OPTIMIZATION OF SURFACE ROUGHNESS IN HIGH SPEED END MILLING OF TITANIUM ALLOY Ti-6Al-4V UNDER DRY CONDITION

CHAPTER 25: COMPARISON OF SURFACE ROUGHNESS IN END-MILLING OF TITANIUM ALLOY Ti-6Al-4V USING UNCOATED WC-CO AND PCD INSERTS THROUGH GENERATION OF MODELS

CHAPTER 26: ASSESSMENT OF PERFORMANCE OF UNCOATED AND COATED CARBIDE INSERTS IN END MILLING OF Ti-6Al–4V THROUGH MODELLING

SECTION D: CRYOGENIC AND HIGH SPEED MACHINING OF METALS AND NON METALS

CHAPTER 27: THE EFFECT OF CRYOGENIC COOLING ON MACHINABILITY OF STAINLESS STEEL DURING TURNING

CHAPTER 28: COMPARISON OF MACHINABILITY OF CERAMIC INSERT IN ROOM TEMPERATURE AND CRYOGENIC COOLING CONDITIONS DURING END MILLING INCONEL 718

CHAPTER 29: HIGH SPEED END MILLING OF SINGLE CRYSTAL SILICON SING DIAMOND COATED TOOL

CHAPTER 30: IMPLEMENTATION OF HIGH SPEED OF SILICON USING DIAMOND COATED TOOLS WITH AIR BLOWING

CHAPTER 31: ELIMINATION OF BURR FORMATION DURING END MILLING OF POLYMETHYL METHACRYLATE (PMMA) THROUGH HIGH SPEED MACHINING

CHAPTER 32: WEAR MECHANISMS IN END MILLING OF INCONEL 718
CHAPTER 33: PERFORMANCE OF UNCOATED WC-CO INSERTS IN END MILLING OF ALUMINUM SILICON CARBIDE (ALSiC) 247

CHAPTER 34: APPLICATION OF PCD INSERTS IN END MILLING OF ALUMINUM SILICON CARBIDE (ALSiC) 253

CHAPTER 35: EFFECTS OF Scribing WHEEL DIMENSIONS ON LCD GLASS CUTTING 259
Chapter 10

Influence of Chatter on Tool Life During End Milling of Aluminium and Aluminium Alloy on Vertical Machining Centre (VMC)

A.K.M. Nurul Amin¹, Abu A², Salha A.D.³, Salhana B.S.⁴
¹,²,³,⁴ Faculty of Manufacturing and Material Engineering, IIUM Malaysia

*e-mail address of Contacting author: akamin@iiu.edu.my

1.0 INTRODUCTION
Cutting tools are subjected to severe stress-strain conditions due to cutting forces, heat generated and vibrations caused during machining. These conditions affect the overall performance of the tool. Wear is the major concern in metal cutting and since it affects the productivity and dimensional accuracy of the machined part. Intensive chatter vibrations are a major concern during metal cutting in most of the cases at high cutting speeds. It leads to lower life of machine tools elements, lower machining accuracy and surface finish, and higher rate of tool wear are caused by chatter. Apart from that high noise level, associated with chatter, is generally uncomfortable for the operator. There are various theories on the formative mechanism of chatter. However Talantov and Amin established quite convincingly that, during turning chatter occurs when the frequency of the cyclic or the serrated chip elements coincides with the natural frequency of the individual components of the machine-tool system, like tool holder, spindle, etc. [1,2]. During resonance the frequency of the vibration remains practically constant and the amplitude increases to a maximum value and then gradually decreases when the component gets out of the resonance. Trent has also concluded that the formation of serrated chips during metal cutting leads to chatter of machine tools [3]. Increasing cutting force contributes to intensification of chatter. Chatter can be reduced by changing cutting parameters [4]. This work aims at studying the influence of cutting parameters on chatter to minimize chatter effects on tool wear and at developing a chart of recommended cutting conditions for the given materials to facilitate almost chatter free machining with satisfactory surface finish and tool life.