ADVANCED MACHINING
TOWARDS IMPROVED MACHINABILITY OF DIFFICULT-TO-CUT MATERIALS

Edited by:
A.K.M. Nurul Amin (Chief Editor)
Dr. Erry Yulian Triblas Adesta
Dr. Mohammad Yeakub Ali

IIUM Press
SECTION A: HEAT ASSISTED MACHINING

1. CHAPTER 1: INFLUENCE OF WORKPIECE PREHEATING ON CHATTER AND MACHINABILITY OF TITANIUM LOY - TI6AL4V

2. CHAPTER 2: MACHINABILITY IMPROVEMENT IN END OF MILLING TITANIUM ALLOY TI-6AL-4V THROUGH PREHEATING

3. CHAPTER 3: SOME ASPECTS OF IMPROVED MACHINABILITY IN PREHEATED MACHINING OF TITANIUM ALLOY TI-6AL-4V

4. CHAPTER 4: MACHINABILITY ASPECTS IN HEAT ASSISTED MACHINING OF HARDENED STEEL AISI H13 USING COATED CARBIDE TOOL

5. CHAPTER 5: TOOL WEAR AND SURFACE ROUGHNESS ASPECTS IN HEAT ASSISTED END MILLING OF AISI D2 HARDENED STEEL

6. CHAPTER 6: MODELING IN PREHEATED MACHINING OF AISI D2 HARDENED STEEL

7. CHAPTER 7: RELATIVE PERFORMANCES OF PREHEATING, CRYOGENIC COOLING AND HYBRID TURNING OF STAINLESS STEEL AISI 304

SECTION B: CHATTER AND SELECTED METHODS OF CHATTER SUPPRESSION

8. CHAPTER 8: ROLE OF THE FREQUENCY OF SECONDARY SERRATED TEETH IN CHATTER FORMATION DURING TURNING OF CARBON STEEL AISI 1040 AND STAINLESS STEEL

9. CHAPTER 9: INFLUENCE OF THE ELASTIC SYSTEM AND CUTTING PARAMETERS ON CHATTER DURING MACHINING OF MILD STEEL

10. CHAPTER 10: INFLUENCE OF CHATTER ON TOOL LIFE DURING END MILLING OF ALUMINIUM AND ALUMINIUM ALLOY ON VMC
11 CHAPTER 11: A NEW METHOD FOR CHATTER SUPPRESSION AND IMPROVEMENT OF SURFACE ROUGHNESS IN END MILLING OF MILD STEEL 83

12 CHAPTER 12: APPLICATION OF PERMANENT ELECTROMAGNET FOR CHATTER CONTROL IN END MILLING OF MEDIUM CARBON STEEL 91

13 CHAPTER 13: APPLICATION OF PERMANENT ELECTROMAGNET FOR CHATTER CONTROL IN END MILLING OF TITANIUM ALLOY - Ti6Al4V 99

14 CHAPTER 14: CHATTER SUPPRESSION IN END MILLING OF TITANIUM ALLOY Ti6Al4V APPLYING PERMANENT MAGNET CLAMPED ADJACENT TO THE WORKPIECE 107

SECTION C: MODELING AND OPTIMIZATION IN MACHINING 117

15 CHAPTER 15: A COUPLED ARTIFICIAL NEURAL NETWORK AND RSM MODEL FOR THE PREDICTION OF CHIP SERRATION FREQUENCY IN END MILLING OF INCONEL 718 117

16 CHAPTER 16: APPLICATION OF RESPONSE SURFACE METHODOLOGY COUPLED WITH GENETIC ALGORITHM FOR SURFACE ROUGHNESS OF INCONEL 718 123

17 CHAPTER 17: DEVELOPMENT OF A MATHEMATICAL MODEL FOR THE PREDICTION OF SURFACE ROUGHNESS IN END MILLING OF STAINLESS STEEL SS 304 133

18 CHAPTER 18: DEVELOPMENT OF AN ARTIFICIAL NEURAL NETWORK ALGORITHM FOR PREDICTING THE CUTTING FORCE IN END MILLING OF INCONEL 718 ALLOY 143

19 CHAPTER 19: DEVELOPMENT OF AN ARTIFICIAL NEURAL NETWORK ALGORITHM FOR PREDICTING THE SURFACE 149

20 CHAPTER 20: DEVELOPMENT OF TOOL LIFE PREDICTION MODEL OF TiAIN COATED TOOLS DURING PART C: HIGH SPEED HARD MILLING OF AISI H13 STEEL 155

21 CHAPTER 21: MODELING FOR SURFACE ROUGHNESS IN END-MILLING OF TITANIUM ALLOY Ti-6Al-4V USING UNCOATED WC INSERTS 161
<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>22</td>
<td>CHAPTER 22: MODELING OF SURFACE ROUGHNESS DURING END MILLING OF AISI H13 HARDENED TOOL STEEL</td>
<td>167</td>
</tr>
<tr>
<td>23</td>
<td>CHAPTER 23: MODELING OF TOOL LIFE USING RESPONSE SURFACE METHODOLOGY IN HARD MILLING OF AISI D2 TOOL STEEL</td>
<td>175</td>
</tr>
<tr>
<td>24</td>
<td>CHAPTER 24: OPTIMIZATION OF SURFACE ROUGHNESS IN HIGH SPEED END MILLING OF TITANIUM ALLOY Ti-6Al-4V UNDER DRY CONDITION</td>
<td>181</td>
</tr>
<tr>
<td>25</td>
<td>CHAPTER 25: COMPARISON OF SURFACE ROUGHNESS IN END-MILLING OF TITANIUM ALLOY Ti-6Al-4V USING UNCOATED WC-CO AND PCD INSERTS THROUGH GENERATION OF MODELS</td>
<td>189</td>
</tr>
<tr>
<td>26</td>
<td>CHAPTER 26: ASSESSMENT OF PERFORMANCE OF UNCOATED AND COATED CARBIDE INSERTS IN END MILLING OF Ti-6Al-4V THROUGH MODELLING</td>
<td>195</td>
</tr>
<tr>
<td></td>
<td>SECTION D: CRYOGENIC AND HIGH SPEED MACHINING OF METALS AND NON METALS</td>
<td>203</td>
</tr>
<tr>
<td>27</td>
<td>CHAPTER 27: THE EFFECT OF CRYOGENIC COOLING ON MACHINABILITY OF STAINLESS STEEL DURING TURNING</td>
<td>203</td>
</tr>
<tr>
<td>28</td>
<td>CHAPTER 28: COMPARISON OF MACHINABILITY OF CERAMIC INSERT IN ROOM TEMPERATURE AND CRYOGENIC COOLING CONDITIONS DURING END MILLING INCONEL 718</td>
<td>209</td>
</tr>
<tr>
<td>29</td>
<td>CHAPTER 29: HIGH SPEED END MILLING OF SINGLE CRYSTAL SILICON SING DIAMOND COATED TOOL</td>
<td>217</td>
</tr>
<tr>
<td>30</td>
<td>CHAPTER 30: IMPLEMENTATION OF HIGH SPEED OF SILICON USING DIAMOND COATED TOOLS WITH AIR BLOWING</td>
<td>225</td>
</tr>
<tr>
<td>31</td>
<td>CHAPTER 31: ELIMINATION OF BURR FORMATION DURING END MILLING OF POLYMETHYL METHACRYLATE (PMMA) THROUGH HIGH SPEED MACHINING</td>
<td>233</td>
</tr>
<tr>
<td>32</td>
<td>CHAPTER 32: WEAR MECHANISMS IN END MILLING OF INCONEL 718</td>
<td>239</td>
</tr>
</tbody>
</table>
33 CHAPTER 33: PERFORMANCE OF UNCOATED WC-CO INSERTS IN END MILLING OF ALUMINUM SILICON CARBIDE (ALSiC) 247

34 CHAPTER 34: APPLICATION OF PCD INSERTS IN END MILLING OF ALUMINUM SILICON CARBIDE (ALSiC) 253

35 CHAPTER 35: EFFECTS OF SCIBING WHEEL DIMENSIONS ON LCD GLASS CUTTING 259
Chapter 9

Influence of the Elastic System and Cutting Parameters on Chatter During End Milling Of Aluminium And Aluminium Alloy on VMC

A.K.M. Nurul Amin¹, Salha Ahmad Dalhan.², Salhana Sahidin @ Saleudin³
¹,²,³ Faculty of Manufacturing and Material Engineering, IIUM Malaysia

*e-mail address of contacting author: akamin@iium.edu.my*

1.0 INTRODUCTION

Machine tool chatter is an intensive type of vibration of the work-tool-fixture (WTF) system during metal cutting. It is caused by interaction of the instability of the chip formation process and natural frequencies of the individual components of the WTF system [1, 2, 3]. It was established earlier [1, 2] and confirmed by recent investigations [4] that the chip formation process is unstable for most materials due to the formation of a fourth type of chip; namely the serrated, segmented or cyclic chip at cutting speed exceed certain critical value. When the frequencies of the instability of these serrated chip formation grow close to the natural frequencies of the individual components, resonance occurs [1, 2]. During resonance the frequency of the vibration remains practically constant and the amplitude increases to a maximum value and the gradually decreases and the component gets out of resonance [3]. This type of vibration during metal cutting is termed as chatter vibrations. The occurrence of chatter, if uncontrolled, can easily result in a poor surface finish, damaged cutting tool, and an irritating and unacceptable noise. In recent years, chatter research has been concentrated into the automatic suppression of machine tool chatter using various control strategies. One of the easy, effective, and popular chatter control strategies is the change of spindle speed [5]. This is because through a proper selection of spindle speed, a favourable condition may be generated to remove machine tool chatter. The main feature of the spindle speed control strategies is that stable spindle speeds can easily be searched without altering any machine tool structure. In the absence of stability data it is very difficult to program for the depth of cut, feed and cutting speed of the tool in order to maintain a satisfactory level of dynamic stability of the machine