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ABSTRACT 

Recently scientists are showing interests in smart structures for their capability in controlling structural behavior 

and monitoring structural health. Twist control of helicopter rotors, micromirrors or shafts in torsional oscillation 

are the active areas of research where smart materials like piezoceramic crystal or shape memory alloy can play 

vital roles. In this paper analysis of twisting of piezoelectric laminated composite plates using higher order shear 

deformation theory has been presented.   
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1. INTRODUCTION 

The needs for structures with self-monitoring and 

self-controlling capabilities especially in aerospace 

applications have caused remarkable growth in the 

research and development of smart structures. A 

smart structure can be defined as a structure made up 

of purely elastic materials, called the substrate, 

integrated with surface mounted or embedded 

sensors and actuators that have the capability to 

sense and take corrective action [1]. Laminated 

composite plates are found to be suitable for use as 

substrates in the aerospace applications for its high 

strength-to-weight and stiffness-to-weight ratios [2]. 

Thus laminated composite plate with embedded 

piezoelectric material that can act both as sensor and 

actuator is a good choice for active control of 

structural shape. However, this kind of active 

structure still needs comprehensive analyses to be 

used successfully in applications.  

There are few exact solutions available to 

describe the kinematic behavior of the piezoelectric 

laminated composite plates. Exact solution becomes 

very difficult when the configuration of the 

structures with embedded piezoelectric laminates 

becomes complex. An alternative solution would be 

to use finite element solutions. The work of Allik and 

Hughes [3] can be considered as one of the pioneer 

in the field of finite element formulation, which 

includes piezoelectric effects in structures. A two-

dimensional quadrilateral piezoelectric plate element 

with one electrical degree of freedom per element 

was developed by Hwang and Park [4] to study 

vibration control of a piezoelectric laminated 

composite plate. The plate element has four nodes 

and each of the nodes has three mechanical degrees 

of freedom. Classical laminated plate theory (CLPT) 

with induced strain actuation and Hamilton’s 

principle were used to formulate the equation of 

motions. It was found active and passive control 

affect each other, thus should be considered 

simultaneously in designing efficient controlled 

structures. 

The works done using CLPT were found 

only suitable to model thin plate. However to model 

thick plate, it is generally accepted that higher-order 

shear displacement theory (HSDT) can model more 

accurately, since through HSDT effects of transverse 

shear stresses can be captured. Ray et. al. [5] 

developed a finite element model for static analysis 

of a simply supported rectangular intelligent plate 

using the HSDT. An eight-noded two-dimensional 

quadratic quadrilateral isoparametric element was 

derived to model the coupled electromechanical 

behavior. The results obtained in these work were 

compared with exact solutions done by the same 

authors previously [6] and found to be in good 

agreement. Chattopadhyay and Seeley [7] developed 

a refined HSDT and used finite element method to 

analyze laminated composite plate surface bonded or 

embedded with piezoelectric layers. Non-linearities 

were introduced to the problem through the strain 

dependent piezoelectric strain coefficients and the 

assumed strain distribution through the thickness. 

Results obtained from this model were shown to 

agree well with published experimental results by 

Crawley and Lazarus [8]. 

All the above works are mainly concentrated on 

load displacement of piezoelectric plates under 
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different actuation voltage. Twisting or torsional 

deformation has almost been disregarded so far.  In 

the present research, piezoelectric material that has 

the capabilities to act as actuators and sensors due to 

direct and converse piezoelectric effect is chosen and 

integrated with a laminated composite plate to study 

twisting effect of the plate under different actuation 

voltage. Laminated composite plate is chosen as the 

substrate for its high strength-to-weight and stiffness-

to-weight ratios. These characteristics make the 

laminated composite plate suitable to be used in 

many applications especially in aerospace 

applications. HSDT developed by Pervez [9] is used 

in order to accurately describe the kinematic 

behavior of the laminated composite plates and the 

piezoelectric layers. The elastic field and the electric 

field are coupled through the linear piezoelectric 

constitutive equations. In the finite element model, 

an eight-noded two-dimensional isoparametric 

element is used. Each node has seven mechanical 

degrees of freedom and one electrical degree of 

freedom.  

2. MATHEMATICAL MODEL 

Kinematics and Constitutive Relations 

Figure-1 shows the geometry of a laminated 

composite plate with surface bonded piezoelectric 

actuator layers on the top and the bottom surfaces. 

The plate considered here has total thickness h, 

length a, width b and number of layers n. 

Figure 1 Geometry of a laminated composite plate 

with surface bonded piezoelectric layers.

The higher-order shear displacement fields 

considered in this research work are [9]: 

( ) ( ) xxo zztyxutzyxu ζθ 3,,,,, ++=
     (1a) 

( ) ( ) yyo zztyxvtzyxv ζθ 3,,,,, ++=
    (1b) 

( ) ( )tyxwtzyxw o ,,,,, =
                    (1c) 

where u, v, w are the displacements of a generic point 

(x, y, z) in x, y and z directions respectively; uo, vo, wo 

are the displacements of mid-plane in x, y and z

direction respectively; z is the coordinate in 

thickness direction; θx, θy are the rotations of normals 

to reference surface about the y and x axes 

respectively; and ζx,ζy are the third order 

displacements or warping functions. 

The strain associated with the displacement fields 

can be expressed as follows [10]: 
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Here yyxx εε ,  and xyγ  are the in plane strain 

components. yzγ  and xzγ  are the transverse shear 

strain components. 

In the present research, quasi-static loading 

and plane stress formulations are assumed. The 

constitutive equations for the kth orthotropic layer 

expressed in the material coordinate system are 

given as follows: 
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For the piezoelectric layers, the linear piezoelectric 

constitutive equations that couple the elastic field 

and electric field are given as follows: 
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The electric fields are given as [11]: 
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where kφ  is the electric potential.  

The electric potential is assumed to have linear 

variations across the thickness of the actuator/sensor 

layers as: 
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where k
oφ  can be treated as the generalized electric 

potential similar to the generalized displacement at 

any point on the surface of the actuator and the 

sensor layers. 

3. FINITE ELEMENT FORMULATION 

The overall plate is meshed into a finite number 

of elements by an eight-noded two-dimensional 

isoparametric element. Referring to Eq.(1), the 

generalized displacement vector for node i 

(i=1,2,…..,8) of the element can be written as: 

{ } { }T
yixiyixioioioii wvuu ζζθθ=                   (7) 

From the above equation, the nodal 

generalized displacement vector of a typical eight-

noded element e can be expressed as: 

{ } ( ) ( ) ( ) ( ){ }TTTTTe
uuuuu 8721 .......=             (8) 

Thus, the generalized displacement vector 

at any point within the element can be obtained by 

interpolating the nodal generalized displacement as: 

{ } [ ]{ }euNu =                               (9a) 

where the shape function matrix is given as: 

[ ] [ ] [ ] [ ] [ ][ ]8721 ....... NNNNN =                 (9b) 

and [ ] [ ]InN ii = . Here [ ]I  is an identity matrix of 

size 7x7 and ( )8......,3,2,1=ini  is the shape function 

of natural coordinates ( )ηζ ,  associated with the i th 

node [11]. 

Referring to Eq.(2a), by substituting 

Eq.(9a) the generalized strain vector { }ε  at any point 

within the element can be express as: 

{ } [ ]{ }euB=ε                                       (10a) 

where, the nodal strain-displacement matrix is given 

as: 

[ ] [ ] [ ] [ ] [ ][ ]8721 ....... BBBBB =         (10b) 

The elements of each submatrix [ ]iB  of [ ]B

are given explicitly in Mahmood [12]. 

Similarly, electric potential can also be 

generalized at any point within the element as: 

{ } [ ]{ }ke
op

k
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[ ] [ ]8721 ....... NNNNN p =            (11c) 

and { }( )8........2,1=i
ke
oiφ  is the electric potential at the 

ith node. 

Using Eq.(11a), electric filed in Eq.(5) can be 

written as follows: 

{ } [ ][ ]{ }ek
op

k
p

k
BZE φ=                          (12) 

where [ ]k
pZ  and [ ]pB  are given explicitly in 

Mahmood [12]. 

Variational principle in conjunction with Eq.(7) to 

(12) yields the following two sets of matrix 

equations: 

[ ]{ } [ ]{ } { }e
S
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o

e
u

ee
uu FKuK =+ φφ               (13a) 
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[ ]{ } [ ]{ } { }e
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where, 
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In the above equations [ ]e
uuK  is the elastic stiffness 

matrix, [ ] [ ]Te
u

e
u KK φφ = is the coupling stiffness 

matrix between mechanical and electrical effects, 

[ ]eKφφ  is the dielectric stiffness matrix, [ ]e
SF  is the 

mechanical force as a result of the surface force and 

[ ]e
SQ  is the electric force as a result of the applied 

surface charge on the actuators. 

4. VALIDATION OF THE MATHEMATICAL 

MODEL 

The results obtained using the mathematical model 

and the computer code developed in this research 

work were validated comparing with those available 

for transverse deflection of laminated plates [13] and 

piezoelectric beams [14]. In both the cases maximum 

error were found to be limited to less than 0.4%. It is 

to be noted here results obtained in [13] and [14] are 

based on First Order Shear Deformation Theory 

(FSDT), whereas the present analysis uses HSDT. 

Twist Analysis    

This research is mainly targeted to analyze twist 

activation in a piezoelectric laminated plate under 

different actuation voltage. To do so, segmented 

actuators are placed on a cantilever plate in the 

configuration as shown in Figure-2. Several set of 

activation schemes as listed in Table.1 are performed 

on the cantilever plate to further analyze this 

capability. Figure-3 to Figure-8 present shapes of the 

cantilever plate produced under these activation 

schemes. Referring to Figure-3 and Figure-4, 

activating either TP or BT scheme produces an 

asymmetric twist in the cantilever plate.  

It is found that activating the TP-BT scheme 

produces a symmetric twist in the cantilever plate as 

shown in Figure-5. Unlike in the case of TP and BT 

schemes where the plate centerline deflects, the 

centerline of the cantilever plate under TP-BT 

scheme remains flat as can be seen in Figure-6 and 

Figure-7. Figure-8 presents further investigation on 

symmetric twist, where the actuator voltage is varied 

from 0 V to 300 V. The degree of twist is found to 

increase as the actuator voltage increases. 

Figure 2 Segmented actuator configuration to 

produce twist. 

Table 1 Set of activation schemes to produce 

twisting. 

Actuator segment 
Scheme 

A B C D 

TP 300 V 0 V -300 V 0 V 

BT 0 V 300 V 0 V -300 V 

TP-BT 300 V -300 V -300 V 300 V 

Figure 3 Shape of a cantilever plate under TP 

scheme of activation under constant actuator voltage 

of 300 V. 
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Figure 4 Shape of a cantilever plate under BT 

scheme of activation under constant actuator voltage 

of 300 V. 

Figure 5 Shape of a cantilever plate under TP-BT 

scheme of activation under constant actuator voltage 

of 300 V. 

Figure 6 Effect of segmented actuator on centerline 

(y = b/2) deflection of a cantilever plate under a 

constant actuator voltage of 300 V. 

Figure 7 Effect of segmented actuator on free end (x 

= a) deflection of a cantilever plate under a constant 

actuator voltage of 300 V. 

Figure 8 Effect of different actuator voltage on free 

end (x = a) deflection of a cantilever plate under TP-

BT scheme of activation. 

5. CONCLUSIONS 

It is found that, symmetric as well as antisymmetric 

twist can be introduced in a cantilever plate by 

activating segmented actuators under different 

scheme of activation. The degree of the twist can be 

increased by just increasing the applied voltage to 

the segmented actuators. This capability presents a 

good opportunity to be used in individual blade 

control (IBC) of helicopters. A scaled down scheme 

of such a plate may be used in micromirror 

orientation for operating optical switches.   
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