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Instability of Cup-Cylinder Compound Shell Under Uniform

External Pressure

Raisuddin Khan' and Wahhaj Uddin?

Instability of compound cup-end cylindrical shells under uniform external pressure is studied. Nonlinear
differential equations governing the large axisymmetric deformations of shells of revolution which ensure
the unique states of lowest potential energy of the shells under a given pressure are solved. The method
of solution is multisegment integration, developed by Kalnins and Lestingi, for predicting the mode of
buckling and the critical pressure of these compound shells. Results show that, when simple cylindrical
and spherical shells which develop the same membrane stress under pressure are used as a compound
cup-end cylindrical shell, buckling takes place in the cylinder portion, near the cup-cylinder junction, at
loads a few times higher than the buckling load of conventional dome-cylinder shells.

Introduction

HULLS OF SUBMARINES are generally constructed from com-
binations of cylinders, cones, and domes as shown in Fig. 1.
The ends of conventional submarine hulls are convex domes
and are often the zone of danger under external pressure
loading. This is because the pressure sustaining capacity of
these shells is limited by the buckling strength of the dome
end instead of the yielding strength of the dome material.
Ross (1987) in his paper on the design of dome ends intro-
duced a new idea of using inverted spherical domes shown
in Fig. 2 as ends of submarine hulls. He argued that as the
inverted dome end, concave to external pressure, will be in
tension, the possibility of dome buckling will thus be vir-
tually eliminated. In the absence of the possibility of failure
due to instability, the pressure sustaining capability of the
hull will be enormously increased as now it will fail due to
yielding. In his paper Ross (1987) analyzed the stresses in
the compound cup-cylinder shell (Fig. 3) by the finite-
element method and made conclusions in support of his new
idea.

The present paper studies the instability of the cup-
cylinder compound shell in order to throw more light on the
suitability of this compound shell as a submarine hull. The
cup-end submarine hull, as proposed by Ross, is shown in
Fig. 2.

The literature on the elastic instability of structures is
richer in theories than in solutions. Most of the earlier works
on finding solutions of problems of instability of shells of
revolution were confined to shallow shells. The main reason
for keeping these studies of instability limited to shallow
shells is that the large deflection equations of axisymmetric
shells could be solved only when the simplification pertain-
ing to the shallowness of the shells was made. The simplified
nonlinear differential equations were then solved by differ-
ent numerical and analytical methods (Akkas 1971a, Akkas
1971b, Akkas 1971c, Koiter 1967, Pope 1968, Reissner 1970,
Tillman 1965, Walker 1969).

Recent efforts include development of a number of gen-
eral-purpose computer programs as surveyed by Uddin (1987)
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for shells of revolution based either on finite-element or on
finite-difference methods of solution. These programs deter-
mine the critical load from an eigenvalue formulation of the
problem in which the results of the prebuckled nonlinear
analyses of shells, based on the minimization of potential
energy, are used. But as pointed out by Thompson (1973),
eigenvalue analysis may lead to unreliable prediction if the
prebuckled state is not accurately determined or not fully
taken into account in the eigenvalue formulation. Uddin
(1987) and Yamada et al (1993) discussed the shortcomings
of classical eigenvalue analysis in detail.

From Patel et al (1982), and Sepetoski et al (1962) it is
found that nonlinear equations of general shells of revolu-
tion are not usually amenable to solution by the presently
used numerical methods (i.e., finite difference and finite ele-
ment) as these methods ultimately lead to the solution of a
large number of nonlinear algebraic equations which have
to be solved by iterative techniques and often fail due to
problems of nonconvergence. On the other hand, the method
of direct integration of the shell equations requires the spec-
ification of the unknown boundary values for some of the
dependent variables at the starting boundary which have to
be determined from their known values at the other bound-
ary through an iterative process. This iterative process for
determining the unknown initial values would always fail
if the length of the shell meridian over which the shell equa-
tions have to be integrated exceeds a certain critical value
as defined by Sepetoski et al (1962). The method of collo-
cation has also been tried for solving the nonlinear equa-
tions of a shell by a number of authors (e.g., Nath et al 1983,
Dumir et al 1984), but these efforts have succeeded only in
simple cases of shallow spherical shells and circular plates.
For these reasons Kalnins & Lestingi (1967) developed the
method of multisegment integration for solving the nonlin-
ear equations of axisymmetric shells whose meridional length
is many times the critical meridional length as defined by
Sepetoski et al (1962).

In the present paper Reissner’s nonlinear theory of axi-
symmetric deformations of shells of revolution has been used
for investigating the meridional mode of buckling of cup-
cylinder compound shells.

Analysis

The nonlinear governing equations of equilibrium for axi-
symmetric deformation of a shell of revolution applied to its
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Fig. 1 Submarine pressure hull (conventional)

deformed shape, as developed by Reissner (1949) and mod-
ified by Uddin (1969), are solved by the method of multi-
segment integration, developed by Kalnins and Lestingi
(1967), using the computer code developed by Uddin (1986).

The buckling phenomenon of the shells is interpreted here
by the so-called “classical criterion” of buckling. According
to this criterion, a given state of equilibrium becomes un-
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stable when there are equilibrium positions infinitesimally
near to that state of equilibrium for the same external load.
These unstable states of equilibrium are the critical points
on the path of equilibrium configurations. Accordingly, the
critical value of the external load corresponds to the first
bifurcation point on the path of equilibrium configurations.
The critical points appear automatically if the equilibrium
configurations based on the principle of stationary potential
energy are determined corresponding to all the values of the
load parameter. Thus, the nonlinear differential equations
of shells, which embody the principle of minimum potential
energy, are solved for the increasing values of load param-
eter until the first unstable state of equilibrium is reached.
The unstable state of equilibrium is signalled by a sudden
change in mode and a high rate of change of deformation
with a slight increase of loading parameter.

According to Thompson & Hunt (1973) the buckling char-
acteristics of any structure, irrespective of the type of buck-
ling, may be best comprehended if the equilibrium path of
the deformed structure under load is determined for both the
prebuckling and post-buckling zones. Thompson’s two theo-
rems on buckling (1973) point out that the first instability
of the equilibrium equations on the primary equilibrium
configuration path would correspond to the critical load of
the structure, irrespective of its type of buckling.

The nonlinear governing equations used in this analysis
are as follow (the symbols in the equations are defined in
Figs. 4-6):

Cup
End Free Flood i
€ = — (1a)
Fig. 2 Submarine pressure hull with inverted dome end Ty
¢ =do— B (10
\ ko = (sin ¢ — sin ¢)/7, (1c)
's Cup End N& = H cos ¢ + Vsin d ' (1d)
Water Ring o ;
] Pressure ég _ CNg _ Vée (16)
T Atmosl. Cylinder _ _ _ _
l Press.| ke = M¢/D — kgv 15
- Ny = (& + v&)/C (19
—R—I My = D(ky + vky) (1h)
Fia. 3 Cup/cylinder combination under uniform external pressure a=L+ & (17)
Nomenclature

Eyv = Young’s modulus, Poisson’s
ratio
h,R = shell thickness, radius of cy-
lindrical shell
rs = radius of spherical cap or cup
C,D = extensional rigidity Eh, bend-
ing rigidity EA*/[12(1 — v%)]
CD=@1 - W& /R, 1/{12PT°R(1 —

H,V = horizontal and vertical stress
o il resultants
NN, = N;/PR, No/PR
H)V = H/PR,V/PR
€;,€0 = middle surface strains

Mo M. = Mo/PRh, M;/PRh
P,P,R = external pressure, P/E, £./R
ro,lo = radial distance of points on
undeformed middle surface
from axis of symmetry,

&€ = €.Eh./PR? eoEht, /PR’ To/é
®,,® = angle between axis of sym- u,w = radial and axial displace-
metry and normal to unde- ments

v} formed and deformed mid- 1,00 = uEh/PR?, wEh/PR?
¢, = meridional length between dle surface o,B,r = shell parameter, ®, — @,
apex and base circle £,€ = distance measured along me- ro+u
keo,k: = curvature changes ridian from the apex of cup- 0.0 = circumferential stress index at
l%e,lég = kok., k. end, £/¢, inner and outer surfaces
N,,Ng = meridional and circumferen- Me,M, = circumferential and meridio- Geis0co = 0ui/E, 0,0/E

tial stress resultants
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N
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Fig. 4 Side view of elements of shell in deformed and undeformed states

Fig. 5 Elements of shell showing stress resultants and couples
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Fig. 6 Middle surface of shell
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F=Li+a )

d—%=&sin¢—1;sind>0 (1k)
da ;

&E=o¢c0s¢—Lcos¢o an
‘;_F_;: e 1m)
av. . L.

7{5 = —a cos &(V/F — PT) (1n)
dH - N .

d_% = —&{(H cos ¢ — Ny)/7 + PT sin ¢} (1o0)

dM _ 0 o B}
d_é_g = & cos d(M, — M) /7 — &PT*(H sin ¢ — V cos $) (1p)

These governing equations are singular at the apex of those
shells which are continuous at the apex. When the condi-
tions () that all the dependent variables are regular and (b)
that the curvature of the undeformed shell is continuous at
the apex are imposed, this singularity is removed and the
following specialized equations applicable at the apex &=
0) are obtained:

Z—’g = CH/(1 + v) (2a)
C;_Zg sy (2b)
Z—é = M./{D(A + v)} (2e)
‘Z_‘g ~abp 2d)
%Ig -0 ] (2e)
dd_l‘gz —0 2f)

Boundary conditions

For the general case of axisymmetric deformations of shells
of revolution, it was shown by Uddin (1969) that the bound-
ary conditions on the edges require specification of

Hora, M, or B,and Vor w 3

In the present analysis, the boundary conditions at the cen-
ter of the spherical cup become

2a=0,p=0,and V=0 4

and those at a point in the cylinder far from cup-cylinder
junctions are

H=0,=0,andw =0 (5)

but, in order to keep the analysis parallel to that of Ross,
the boundary conditions in the cylindrical portion are taken
as

i=B=0andw=0 (6)

as shown in Fig. 3.
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Table 1 Parficulars of shells. C and D in shell humbers stands for cup-

Table 2 Critical loads of different shells. (1C), (1D) etc. indicate shell

cylinder and dome-cylinder compound shells, respectively numbers
Shell No. R/h L/R rs/R Type of Junction P,/E x 10°
1C, 1D 100 0.40 2.0 no ring Present Analysis Wit snbu Mi
’ . - g von Mises
2G, 2D 100 0.40 2.0 with ring Cup- Dome- Equation for Equation for
3C, 3D 250 0.40 2.0 no ring Cslind Cylind Cylind Cylind
4C, 4D 250 0.40 2.0 with ring yinder yandger ylnder ynder
86.6 17.35 27.3 273 (12)
(1C) (1D)
103.3 17.5
20) (2D)
. 8.56 2.63 2.59 2.59 (16)
Solution (30) (38D)
. 9.46 2.98
(40) (4D)

The same method of multisegment integration as used by
Uddin (1986) for nonlinear analysis of pressure vessels has
been employed with boundary conditions given in equations
(4) and (6). The program developed by Uddin (1986) can han-
dle different combination of axisymmetric shells with posi-
tive curvature only. For the present analysis the program
has been modified to handle a combination of shells with
positive as well as negative curvature and is used for the
determination of the buckling pressure. To determine buck-
ling pressure the program starts with an assumed load P
and a load step AP; then the nonlinear governing equation
at each load step with a preassigned convergence criterion
is solved. If the solution fails to converge at any load step,
the load step AP is automatically halved and the solution is
again attempted. When AP becomes very small compared with
the value of P, then P is taken as the critical pressure for
the buckling of the given shell.

Results and discussion

To investigate the suitability and superiority of cup-
cylinder compound shells as proposed by Ross (1987) over
conventional dome-cylinder compound shells under uniform
external pressure, four shells of each group are studied. Par-
ticulars of the compound shells are given in Table 1. As the
maximum membrane stress for a thin-walled sphere is half
the maximum membrane stress for a thin-walled cylinder of
the same radius, it was decided to make the radius of the
cup end or dome end twice the radius of the cylinder. With
such a combination the inverted spherical cap of the cup-end
compound shell extends 0.27 times the radius of the cylinder
into the cylindrical space, reducing the total internal space
of the submarine. The lost space may be compensated by
lengthening the pressure hull. As the space available inside
the spherical dome is only a fraction of the volume provided
oy cylinder segment of the pressure hull, the loss of buoy-
ancy is not significant. Submarine hulls are strengthened by
oulkheads at reasonably close intervals. As the end closures
re the vulnerable zones for instability, it would be wise to
1se bulkheads near the cup-cylinder junction. In the present
ase, use of bulkhead very near the junction may help in-
rease the stability pressure. In the case of the cup-cylinder
hell, setting of an internal bulkhead at cylinder length to
adius ratio (//R) 0.3, that is, near the tip of the inverted
up, may make the whole space between the cup and the
yulkhead useless; thus [/R = 0.4 may be assumed to be fea-
ible.

Results of the investigation for the meridional mode of
uckling of the cup-cylinder and dome-cylinder compound
hells are presented in Table 2.

Instability pressures for the cylindrical portion of the shell,
onsidering simple supports at the ends and subjected to

UNE 1995

combined action of uniform lateral and axial pressure, cal-
culated from the Windenburg (1934) formula

)
2.6{ =
d

E l <t)1/2
- —045| -
d d

are given in column 3 of Table 2.
The Windenburg equation is the modified version of the
von Mises (1929) equation

B t/a { 1

E 02+ 05(ma/D% " \[n%(/ma)? + 1P
2

2 12 2
+ m12a2(1 5 [n* + (mwa/D)*] }

The Windenburg equation is an approimation that mini-
mizes the circumferential wave number (n). Therefore () is
considered even though it does not appear in the equation.
The critical load calculated from the von Mises equation is
given in column 4 of Table 2 with circumferential wave
numbers in brackets.

Critical loads of compound shells in Table 2 show that cup-
cylinder compound shells are superior to the dome-cylinder

20x10° —
€= 0.0
€= 0.72
15x10°F £ 1.00
w 10x10°®
oo
0.5x10°®
Q -4 4 4 -4
-0.5x10 0 0.5x10 10x10 15x10
uh/R?

Fig. 7(a) Load versus radial deflection at critical load (P,/E = 1.735 X
107%) for dome-cylinder compound shell (1D)
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Fig. 7(b) Load versus radial deflection at critical load (P, /E = 8.66 x 107°)
for cup-cylinder compound shell (1C)

shells of the same physical parameters and that the critical
load for the former is a few times greater than that for the
latter. Results for the dome cylinder and pure cylinder given
in columns 2, 3, and 4 of Table 2 show that the instability
load of the dome cylinder is dependent on the radius-to-
thickness ratio. For thicker shells, dome-cylinder shells buc-
kle axisymmetrically at loads much lower than that of the
asymmetric instability load of a pure cylinder. The load-
displacement curve for such a dome cylinder (shell No. 1D,
Fig. 7(a)), shows that buckling takes place both at the cyl-
inder and dome portion of the combination. From this dis-

Original shape
Deflected shape

Fig. 8(a) Original and buckled shape of dome-cylinder shell (1D)

Original shape

Deflected shape

Fig. 8(b) Original and buckled shape of cup-cylinder shell (1C)
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Fig. 9(a) Circumferential stresses at critical load (Py/E = 8.66 X 107%) for
cup-cylinder compound shell (1C)

cussion it is seen that the dome-cylinder combination may
even reduce the instability load of the attached cylinder. In
the case of cup-cylinder shells, only the cylindrical portion
of the shell buckles. Figure 7(b) shows load versus radial
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S
Fig. 9(b) Circumferential stresses at P/E = 8.66 X 1075 for cup-cylinder
compound shell (2C)
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Fig. 10 Circumferential stresses in spherical cap under internal pressure of
P/E = 0.86 x 107
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detlection of the cylinder of the cup-cylinder shell (1C). In
Figs. 8(a) and 8(b), the buckled modes of shells (1D) and (1C)
are shown.

In Figs. 9(a) and 9(b) circumferential stresses developed
in the compound shells (1C) and (2C) of Table 1 correspond-
ing to the critical load of shell (1C) are plotted against me-
ridional distance, and in Fig. 10 the circumferential stresses
in the cup end of the compound shell with clamped boundary
and (shown in the inset of Fig. 10) under a pressure equal
o the critical load of shell (1C) are plotted. Figures 9(a) and
)(b) show that at the junction of cup and cylinder, stresses
are maximum and compressive at both the inner and outer
surfaces. The maximum stresses in Figs. 9(a) and 9(b) are
around 40 and 25 times greater than that developed in the
simple cup of Fig. 10. These high compressive stresses around
he junction may lead to local circumferential instability and
ither of the shell components may buckle circumferentially
sefore axisymmetric buckling.

Conclusion

Nonlinear axisymmetric analysis of the cup-cylinder shells
s proposed by Ross (1987) and also of the conventional dome-
ylinder shells under uniform external pressure show that
up-cylinder shells are superior to dome-cylinder compound
hells. In the case of cup-cylinder shells, buckling takes place
nly in the cylinder portion, and the buckling load is a few
imes higher than that of the dome-cylinder shell of same
hysical parameters. Both the dome and the cylinder of a
lome-cylinder shell buckle simultaneously. Sometimes the
ylinder portion of a dome-cylinder shell is found to buckle
ven at loads lower than the buckling load of a pure cylinder
inder uniform external loading. But circumferential stresses
leveloped at the junction of the cup-cylinder compound shells
re very high and compressive both at the inner and outer
urfaces, which may lead to asymmetric buckling before the
ccurrence of meridional buckling. Thus, asymmetric anal-
sis is required to make an ultimate conclusion.
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