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The instability under pressure of conical end caps with spherical tips when
used as end closures to pressure vessels is studied in this paper. The spherical
tip of the conical end cap was assumed to be attached in such a way that
continuity of the slope it the cone/sphere junction was maintainea. tne
geometrical parameters of the spherical-tip conical end closure are the ratio
rlR;the apex angle V of the conical frustum; and the thickness ratio Rlh,
where r and R are respectively the radius of the cone at the sphere/cone and
vessel/cone junctions and /z is the thickness of the shell. Governing nonlinear
differential equations'of axisymmetric deformation which ensure the unique
states of lowest potential energy under given pressure have been solved by
using the method of multisegment integration, developed by Kalnins and
Lestingi.' The results show that the critical pressure for the end closure
decreases with increasing apex angle at constant values of. Rlh and rlR. St
constant values of V and Rlh, the critical pressure remains constant ovef a
considerable range of r I R and then decreases to a minimum value at r I R: 1,.0
which corresponds to a purely spherical end cap without the conical extension.

NOTATION

C, D Extensional rigidity Eh, bending
rigidity Eh3 I II2(I -_y)I

e, D (r - v')tul R, rl{rzPT,ng - u,)}
E, v Young's modulus, Poisson's ratio
h, R Shell thickness, radius at cone-vessel

junction
Radial and axial stress resultants
HIPR,VIPR
Circumferential and meridional cur-
vature changes
ktt", kEt"
€"Eh lPRz, Rlh
Circumferential and meridional couple
resultants

IuIr, M, MelPRh, MtlPRh
NE, N, Meridional and circumferential stress
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N*, f i ,  NslPR, NeIPR
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fo, h

r

U , W

u r w

a r B
€€, €e

Es, Ee

t"

t , t

Cci; Oco

Q", Q

External pressure, PlF,, €"ln
Radial distance of points on unde-
formed middle surface from axis of
symmetry, r"l t"
ro * tt, also radius of the end closure
at the cone/sphere junction
Radial and axial displacements
uEh I PRz, wEh I PR2
Shell parameter, Q" - Q
Meridional and circumferential strains
etEh{" I PRz, erEh{" I PRz
Meridional length from the apex of
the ehd closure to the cone/vessel
junction
Distance measured from apex along
the meri dian, { I {"
Circumferential stress index at inner
and outer surfaces
Angle between axis of symmetry and
normal to undeformed and deformed
middle surface
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1 INTRODUCTION

Pressure vessels are usually made of segments of
shells of different geometries such as cylinders,
cones, spheres, ellipsoids, or some other exotic
geometry. The end closures of these vessels are
in most cases spherical, ellipsoidal, plate or
conical in shapes. The end closures are usually
the most vulnerable section of vessels both in
terms of stresses and instability. Instability is
becoming the overriding criterion in designing
exernally pressurised vessels with improving

ilff;" 
andl99jtion technology available

Until now Very few works have been done on
the stability of combinations of shells.2-5 In
particular spherical cap top conical shells have
not been investigated. Submarine and many
other pressure-sustaining systems often use a
hemispherical or a spherical cap as the end
closure of cylindrical shells. In particular,
spherical caps when combined with cylindrical
shells develop sharp geometric discontinuity. This
geometric discontinuity in turn develops high
discontinuity stress, and makes the junction
vulnerable. Moreover spherical caps are gene-
rally very weak in stability in comparison to
conical caps. Considering these facts, it is
expected that a conical frustum with a spherical
tip would prove to be a superior end closure for
pressure vessels. The present paper is thus
devoted to the study of instability of spherical-tip
conical end closures of pressure vessels. This is
shown schematically in Fig. L which shows a
spherical cap attached at the narrow end of a
truncated conical shell without any discontinuitv
in slope at the junction.

2 ANALYSIS

Nonlinear governing equaiions for axisymmetric
deformations of shells as developed by Reissner8

Fig. 1. Section through spherical
with different rlR

cap-cone combination
ratio.

and modif,ed by Uddinu are solved by using the
method of multisegment integration developed
by Kalnins and Lestingil with the help of the
computer code developed by Uddin.? The critical
pressure for a particular shell is interpreted from
the fact th-at any further increase in pressure, no
matter how small, will cause enormous shell
deformation indicating that the state of lowest
energy for any increase in pressure is far from
that at the critical pressure.

The nonlinear differential equations of shells
embodying the principle of minimum potential
energy are solved for increasing values of load
parameter until the first unstable state of
equilibrium is reached. The onset of the first
bifurcation point is indicated by a substantial
increase in displacements and stresses of the shell
for very small increase in the load parameter. At
the bifurcation point itself any increase of load
parameter, however small, produces enormous
deformation and thus the numerical technique
used here fails to converge to any solution. It
should be noted that the term 'bifurcation point'
is used here to refer to the point of initiation of a
secondary mode of deformation, may it be limit
point or branching point. i

Prediction of stability on the basis of purely
equilibrium studies is credited in the following
two theorems to Thompson.e
. Theorem L. An initially stable equilibrium

path rising monotonically with the
loading parameter cannot become
unstable without intersecting a
further distinct secondary equilib-
rium path.

. Theorem 2. An initially stable equilibrium
path rising with the loading
parameter cannot approach an
unstable equilibrium state from
which the system would exhibit a
finite dynamic snap without the
approach of an equilibrium path
(which may or may not be an
extension of the original path) at
values of the loading parameter
less than that of the unstable
state.

Both branching point and limit point buckling of
structures are embodied in the instability of the
governing large deflection equilibrium equations
of these structues. Detection of these points of
instability on the primary stable equilibrium path
is a handy tool for the study of buckling even
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detormed

of elements of shell in deformed
undeformed states.

Fig. 2. and

though it does not specify its type-limit point or
branching, symmetric branching or unsymmetric
branching, stable branching or unstable
branching-all of which depend on the physical
parameter of the structure including the bound-
ary restraints and can be answered only after
studying the possible postbuckling equilibrium
paths.

The nonlinear governing equations used in the
present analysis are presented below. The
symbols in the equations are defined in Figs 2, 3
and 4.
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Fig. 4. Middle surface of shell.

No-(er+  ve) le

Me: D(ku + vka)

(1e)

(1h)

(1i)

(1i)

(1k)

(11)

(1m)

dV
OE 

: c cos 0V 17 - Pf) (1n)

_
dH

dF 
: -"{(H cos ,f - Nr)lr + PT sin {} (1o)

-
dM

OE 
: a cos Q(M, - M)lr - aPT2

x ( H s i n , f - 7 c o s f )

t3

a : L * E e

r : L n + u
dw
- - a s i n  Q - L s i n @ ,o5

du
- : c c o s 0 - L c o s r f ,o6

d B r ;- -  = :  K ,
d t s

u
€ e :  =

ro

Q : Q " - F
l / .ke: (sin @" - sin Q)lf"

N 6 : F l c o s  O + V  s i n @

EE: eNE - vEe

E6: IvlalD - Erv

du

G: 
cH l(1' + v)

(1p)

The above governing equations are singular at
the apex of those shells which are continuous at
the apex. When the conditions that all the
dependent variables are regular and that the
curvature of the undeformed shell is continuous
at the apex are imposed, this singularity is
removed and the following specialised equations
apply at the apex (f - 0).

of -shpll showing stress
couples.

dw
- : 0

(2a)

(2b)

i.''4
Ftg. 3. Elements resultants and
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For the generX case of axisymmetric deforma-
tions of shells of revolution, it was shown in Ref.
6 that the boundary c_onditiots on the edges
require specification of H or u, Me or B, and I/ or
w. In the present analysis, the conditions at the
centre of the spherical cap become u :0, F :0,

and V :0, and that at the base of the shell,
where it is considered as a fixed end, they
b e c o m e  u : 0 ,  F : 0 ,  a n d w : 0 .

4 SOLUTION

The same method of multisegment integration as
used by UddinT for nonlinear analysis of pressure
vessels has been. employed with the boundary
conditions specified above. To determine the
buckling pressure the program starts with an
assumed load P and a load step AP, and then
solves the nonlinear governing equations at each
load step with a preassigned convergence criteria.
If the solution fails to converge at any load step,
the load step AP is automatically halved and the
solution is again attempted. When AP becomes
very small compared to the value of p, ttren P is
taken as the critical pressure for the buckling of
the given shell.

5 RESULTS AND DISCUSSION

Conical frusta of semi-apex angles of 30o, 60",75"
with R lh : L00 are combined with different
spherical caps compatible with the corresponding
frusta. The combinations studied are shown in
Fig. 1. The combination r lR : I'0 is simply a
spherical cap compatible with the base radius R
of the cone with no cohical frustum attached.

Md. Wahhaj Uddin

For each cone angle eleven diffetent c,ombina-
tions of rlR from 0'25 to rlR: L'00 were studied
for buckling under uniform external pressure. In
Figs 5(a), 5(b) and 5(c) buckling pressure versus
r lR curves are plotted for three different sets of
caplcone combinations. The curves show that for
an appreciable range of r I R, buckling load is
almost independent of r lR and thereafter it starts
decreasing and becomes a minimum at r lR : 1'0.
The constant value of buckling pressure is around
40o/o, 50"/", and 70"/" greater than that of the
lowest value that occurs at r lR -'1.'0 for
semi-apex angles 30o, 60' and 75" respectively.
Thus it seems that the addition of a conical
extension to spherical ends may improve the
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external pressure sustaining capacity of a
spherical cap.

In Figs 6-9, the deformed configurations of
four shells near critical load with rf R:0.25,
0'50, 0'75 and 1.00, and semi-apex angle 30o are
shown schematically. The shells in Figs 6, 7 and
8 with conical portion at the base deforms
severely near the base only. tLe deformation
pattern of these three shells possesses close
similarity. Similarity in buckling load for these
three shells may be due to this similar deflection
pattern. Figure 9 shows that the simple spherical
cap with no conical extension at the vessel end

Fig. 6. Shape at critical pressure (r lR = 0.25\.

Fig.7. Shape at crit ical pressure (rlR:0.50).

Fig. 9. Shape before load and at critical load (r lR: 1.0).
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Fig. 10.
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Load vs. axial deflect ion (r lR:0.75).

junction deforms severely throughout the shell
meridian.

Load/deflection pattern and deformation con-
figuration of all the three sets of cap cone
combination were found more or less similar. As
such the combination using a 30' semi-apex angle
is discussed below.

Load versus axial deflection for the shell with
rf R:0.75 and semi-apex angle 30" is shown in
Fig. 10, where it is seen that almost all the points
on the shell maintain a common trend of inward
deflection. The other shells compatible to this set
with conical extension are also found to show
similar behaviour in cases of axial deflection. But
the relevant spherical cap (r ln:1.0) does not
behave so. In Fig. 11 the axial displacement
history of the spherical cap is shown, where it is
found that some of the points of the cap move
inward and others move outward at or near the
critical load. This kind of behavior is seen in
cases of radial displacement of the shells with
conical extension, near the base, where radial
displacement is severe (Figs 12, 13, 14).Radial
deflection of the spherical cap is shown in Fig. L5,
which shows that radial displacement of this shell
is more or less similar to the other shells.
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Fig.8. Shape at crit ical pressure (rlR:0.75).
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Fig. 11. Load vs. axial displacement (rlR:1.0).
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Fig. 15. Load vs. radial displacem ent (rlR:1.0).

only near the base, where use of appropriate
stiffeners may further improve the load sustaining
capacity of the shell.

6 CONCLUSION

From the above analysis it may be concluded that
spherical cap end closures of shells may be made
stronger against compressive pressure loading by
using a geometrically composite shell, the
combination of a spherical cap with a compatible
conical frustum. 

i
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Fig. 14. Load deflection curve for (rlR:0.75).

From the above analysis it is found that a
spherical cap under uniform external pressure is
much weaker than a cap which is the
combination of a spherical cap and a compatible
conical frustum. The composite shell is weaker




