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INTRODUCTION

Problems of solid mechanics, have hardly lost interest of
researchers because they nerzer got solved entirely to the
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satisfaction of all the physical conditions imposed on them by
the practical world. Even the most classical problems of
bending and twisting of a slender rod or beam by end forces
are constantly looked into with increasing sophistication in

their method of analysisi*. The age-old Saint-Venant's prin-
ciple is still applied and its merit is evaiuated in solving
problems of solid mechanics in which full boundary effects

could not be taken into account in the solutiont process3'-5.

The management of boundary conditions and boundary
shapes have remained as the biggest hurdle in the solution
processes of the problems of solid mechanics. Photo-elastic
studies are being carried out for classical problems like uni-

formly loaded beams on two supports6-t qnly because bound-
ary effects could not be fully taken into account in their
analytical methods of solutions.

The difficulties involved in trying to solve practical elastic
problems using Airy's8 stress function are pointed out by
Uddine and also by Durellit. The problem of boundar! fil&oo:
gement persists even in the finite difference solutions of
elastic problems using the displacements formulation. The u,
v- formulation involves finding two functions simultaneously
from two second order partial differential equations. But
solving for two functions satisfying two simultaneoqs second
orderequations and variously mixed conditions on the bound-
ary is almost impossiblee. In circumventing this problem,
Dow, Jones and Harwoodtt'havd introduced a new boundary
modelling approach for finite- difference applications of dis-
placement formulation of solid mechanics and solved the
problem of uniformly loaded cantilever beam. In this connec-
tion, they reported that ttre accuracy of the finite diff'erence
method in reproducing the state of stresses along the bbundary
was much higher than that of finite element analysis. How-
ever, they have noted that the computational effort of the finite
difference analysis under the new boundary modelling is even
somewhat greater than that of the finite element analysis.
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Analysis of Stresses in Deep Beams using Displacement Potential
Function
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This paper describes a numerical approach for the analysis of stresses of two dimensional boundary value
elastic problems. Specifically, it is on the investigation oJ stresses and deformations in various critical regions
of deep beams. An ideal mathem.atical model has been used to formulate the problem. The rationalitl, and
practicability of the present formulation are ftrmly established here through the finite dffirence soluti.ons of
deep beams. Results are also compared with the elementary solutions and as expected, the discrepancy is
observed to be quite appreciable, specifically at thefixed ends of the beams. The present investigation shows
that any fixed end of a deep beam is an extremely critical zane and the elementary theory of beams is qaite
helpless in predicting the stresses in this zone.
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NOTATION

: length of the beam in the y-direction

: depth of the beam in the -r-direction

: elastic modulus of the material

: applied maxinum stress at the boundary of deep
beam

: displacement component in the -r-direction

:  u /b

: displacement component in the y-direction

: v / b

:  x/b

: y / a

: rectangular coordinates

: Poisson's ratio

: normal stress component in the x-direction

: norrnal stress component in the y-direction

: shearing stress-component in the ry-plane

: Airy's stress f.unction

: potential function defined in terms of displace-
ments

: oa/q

:  g/q
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Considering all these shortcomings, an ideal numerical model
has been developed based on a new formulationtt to solve the
present problem. Here,'the elastio problem has been formu-
lated in terms of a potential function g, defined in terms of
displacement components, which is considered as parallel to
Airy's stress function $, since both of them have to satisfy the
same bi-harmonic equation, but free from its inability of
accounting the mixed boundary conditions

FORMULATTON OF THE PROBLEM

Analysis of stress in a material body is usually a three-
dimensional problem. In most cases, the stress analysis of
three- dimensional bodies can easily be treated as two-dimen-
sional problem, becallse most practical problems are often
found to conform to the states of plane sffess or plain strain.
In case of the absence of any body forces, the equations
goverrring the three stress components oy, c! and oyy under the
states of plane stress or plane strain are:

E o r  d o -
* +  * =  0  ( 1 )
d x  d v

D civ E oxv
= - - z + - ; - = 0  ( 2 )
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[ d t  
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If the stress functions be replaced in equations (1), (2) and (3)
by displacement function u and v, which are related to stress
functions through the expressions,
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E  [ a ,  d u 1o y -  l - + v # l  ( 5 )'  7 - v ' L o y  d * J
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. a 'l (6)
then equation (3) is redundant and equations (1) and (2)
transform to

d z  u  f t  - r )  d ' u  ( l  +  u )  d ' v- + l  . - l  - + + l  _  |  *  = 0  ( 7 )
d x ' i . 2 ) a y  | . 2 ) d x d y
d z v  ( r - v \  d ' v  ( t + v )  t 2
\ 2 + l  . l - + l + l f $ = 6  ( 8 )
d y '  t _  / '  

)  
d * '  t  2  

)  
d x d y

The problem thus reduces to finding u and v in a two-dimen-
sional field satisfying the two elliptic partial differential equa-
tions, (7) and (8).

The problem is reduced to the determination of a single
function instead of two functions u and u simultaneously,
satisfying the equilibrium equations (7) and (8). In this for-
mulation, as in the case of Airy's stress function $12 a potential
function V(a y) is defined in terms of displacement compo-
nents as

d ' V
t I = -

D,r Dv

1  [  . 8 2 v . ^ o t v - lv = -: i-  I  ( t  -vr - ;+ z--;  I
l + v [ '  d y '  d r ' ]

When the displacement components in the equations (7) and
(8) are replaced by Vft, y), equation (7) is automatically
satisfied and the only condition that y has to satisfy, becomes
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= o (9)

Therefore, the problem is now formulated in such a way that

a single function ry has to be evaluated from the bi-harmonic
equation (9), satisfying the boundary conditions that are speci-
fied at the edges of the beam.

In order to solve the problem using the present forrnulation,
the boundary conditions are also needed to be expressed in

terms of V and thus the corresponding relations between
known functions on the boundary and he function \i/are,

D , Vu - a;8,

, = * [rt*r #.'ztrar]
or= r:Gt#*-"#]

( 1 1 )

( \2 )

.  3 ' v  I
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As far ,as numerical method of solution of equation (9) is
concerned, it is evident from the expressions of boundary
conditions (10) to (14) that, no matter what combinations of
two conditions are specified on the boundary, the whole range
of conditions that y has to satisfyi"[equation (9) within the
body and any two of the equations (10) to (14) at points on
the boundary] can be expressed as finite differrnce equations
in terms of ty (x, y). Here, it should be pointed out that, for
Airy's stress function formulation, the boundary conditions
known in terms of displacement components cannot be ex-
pressed in finite difference equations and hence the stress-:
function formulation cannot be used for mixed boundary
value problemse.

SOLUTION PROCEDURE

The essential feature of this numerical approach is to get the
solution of the bi-harmonic equation (9) subject to the appro-
priate boundary conditions prescribed over the edges of the
beam. As far as the solution through the proposed displace-
ment function, lrformulation is concerned, attention may be
drawn to the following points.

Method of Solution

The limitation and complexity associated with analytical so-
lution ultimately give rise to the fact that the numerical
solution lor this class of problems is the only plausible ap-
proach. Here; finite difference technique is used to discretize
the bi-harmonic partial differential equation and also the
differential equations associated with the boundary condi-
tions. The discrete valueS of the displacelnent function

V'(x, y), at mesh points of the domain concerned (Fig I ) is
solved from the system of linear algebraic equations resulting
from the discretizaion of the bi-harmonic equation and the
asiociated boundary conditions

E
+( 1

t+ry + (z +
L o  Y -v)2
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FIGURE 1
T}I$CRHTIUATION OF THE DOMAIN IN RELATION TO
COORITISIATE SVSTEM
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FIGURE 2
. BOTFI ENSS FIXED DEEP BEAM SUBJECTED TO
Ul{lFORSf tOAI}lltlG AT THE TOP

FIGURE 3
DEEP CANTII-EfER SUBJECTED TO PAFABOLIC
SHEAN AT THE FREE END

o+

Discretization of the Domain

The division of the domain into mesh points can be done in
any regular or irregular manner, btrt considering the rectangu-
lar shape of the boundary and also the nature of the differential
equations involved, rectangular grid points are used all over
the region concerned for numerical coriiputation, Moreover,
to keep the order of error of the difference equations resulting
frorn the boundary conditions to a minimum, an additional
false boundary, exterior to the physical boundary, is intro-
duced.

Specification of the Boundary Conditions

As each mesh point on the physical boundary of he elastic
body,always entertains two conditions at a time, one is used
to evaluate \rat the points on the physical boundary itself and
the other for the corresponding points on the exterior false
boundary. Finally, the governlng bi-harmonic equation is.
used only to evaluate \fat the interior mesh points of the two-
dimensional body.
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Solution of Resulfing Algebraic Equations

There are numerous existing methods of solving a system of
algebraic equations. The iteration method is advocated for
large sparse system of linear algebraic equations, but consid-
ering the most unfortunate part associated with the iteration
method not always converging to a solution and sometimes
converging but very slowly, the present problem is solved by
the use of the direct method of solution which ensures better
reliability as well as possibility of getting more accurate
solution in a shorter period of time.

Evaluation of Stress and Displacement Components

Finally, the same difference equations are again organized for
the evaluation of all the pararneters of interest in the solution
of deep bearns from the ry values at different points of the body
as all the components of stress and displacement are expressed
as sfmmation of different derivatives of th'e function rp

EXEMPI,ARY PROBLEMS AND DISCUSSIONS

Numerical solution of elastic problems with mixed and
changeable boundary conditions had rarely been attempted in
the past because of the inability of handling these boundary
conditions in Airy's stress function formulation of the prob-
lem. This problem is now satisfactorily tackled by present
formulation. The proposed displacement formulation is suc-
cessfully applied to analyze the state of stresses as well as
deformations in deep beams.

In obtaining numerical values fpr the present problem, the
beam as the elastic body, having a narrow rectangular cross
section of unit width, is assumed to be made of ordinary steel
(v = 0.3, E = 200 GPa). Solutions atre presented rnainlyin the
form of graphs. In order to make the results non-dimensional,
the displacements are expressed as the ratio of actual displace-
ment to the depth of the beam and the stresses are expressed
as the ratio of the actual stress to the maximum stress applied
at the bounclary. Here, two specific problems of deep beams
are solved-one is a both ends fixed beam and the otheir a
cantilever.

Solution of Eoth Ends Fixed Deep Beams

For the problem of both ends fixed beam, shown in Fig 2, the
opp.osing lateral edges'O = 0 and 1) are fixed, bottom edge
G = 1) is free of loading and the top edge G = l) is subjected
to uniformly distributed compressive loading.

When the boundary conditions are expressed mathematicalJy,
then, for the opposing lateral.edges, AC and BD, the norrhai
and tangential displacements,

u 6 , r )  -  v C x , y )  =  0  f o r Q  (  V  <  1 ,  y  =  0 a n d  1 ;

for the bottom edge, CD, the normal and tangential stresses,

ox(x,  D = o 'y@,t)  = o forQ < t  < 1,  . r= l ;

and for the top edge, AB, the normal and tangential stresses;

c , x 6 ,  D  
-  - 5 M P a

6 t y @ ,  I ) = 0  f o r Q < t < 1 , x = 0

The results obtained for this problem are shown in Figs 4 to
8.In the following discussions, three different solutions of the
same problem are referred to.

The first of these three solutions is the elementary solution
which is based on the assumption that the plane cross-sectiong
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clf the beam remain plane under loading and the elastic curve,
that is the deformed shape of the neutral axis" is such that it
has a zero slope at the fixed end. The elernentary solutions for
this problem are as foliows:

0 - r = 0

6 y =  ( a / b ) 2  [ l y - i t ' * 1 / 2 1  e 7 - r ). L

6 i ; )  =  *3 (a /  b )  (zT-D l ,  -?1
L I

The second one is the Airy's stress function Q-solution which
is, of course, free frorn the assurnption of plane sections
remaining plane but the end fixity is accounted in the same
way as in the elementary solution and the results are claimed
to be accurate at a distance e.qual to or grcater than the depth
of the beam from the flxed snd, on accounts of Saint -Venant's

Principle. The relevant $-solutions for this problern are,

*= (E-rf t" /b\2 $ y 4f -t n) + ef -Z x + t /s)f
6'.y = -3 (a / b) (2, -i) [ " 

-;l' t -  J
The third is the displacenlent poterrtial function 1r- solutiern
which is based on the complete satisfactions of the conditions
imposed on the bearn in the real world. This solution is thus
expected to be identical with that of S- solution at distances
of the order of depth from the restrained edges and would
differ only in the regions near and at the restrained edges.

The present numerical solution predicts almost lhe same re-
sults as that of both elementary and $- solutions for sections
at a considerable distance from the ends and ttle rclevant
comparison of the three solutions are shown in Fig 4. This
establishes the fact that the y-fbrmulation of the problern is
free frorn any conceptual error and mathematical proceclure,
and no error is committed in the computational procedure fcrr

V. Fig 5 shows the distribution of clisplacernent component
7 along ihe neutral axis of the beam of Fig 2, for dift-erent
length to depth ratios. Here; the effect of a,rh ratio on the
clistrit-rution confbrms to the fact that, at iowe,r a/b ratio, the
end effects become very prominent and provides restrictiein
to the dellection of the bearns.

Fig 6 shows the distribution of nr:rrnal stress cornponent <lr
rylqh respect to x at various transverse sections of a particular
beam (a/b = 5). Frorn the graph, it is evident that the distribu-
tion of ox at the fixed ends is quite different from other sectiorrs
af the bearns and also the fixed end is observed as the most
critical section of the beam as far as o., is concerned. As
appears from the graph (Fig 6), magnitude ofbx at the rop face

G=0) is always unity and zero at the bottom face fr= l;
which, in'turn conforms to the fact that the numerical formu-
lation is capable of reproducing the state of stresses exactly
either at or away from the bcundaries. Here, also the

Q -solution of the problern, independent of !, is compared
with ry -solution and is observed to be identical at section

I  = 0.5.

Fig 7 shows the variation of the normal stress component Q,
at various transverse sections of the bearn. Here also tlie fixed
ends are observed as the rnost critical section with respect to
other sections of the beam. This variation of normal stress
components in the direction of y is analyzed mainly to com-
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pare how the elementary .solutions differ frorn that of the
numerical solutions. In elementary soiution it is assunied that
the distribution varies linearly with distance tiom neutral axis
and the rnagnitude is equal at the top and botrom fibers. As
evidqnt from Fig 7,the solutions obtained through the present
formulation differ from that of elementary solution in the
sense that the distribution is far off from linear'. rather it
approaches tcl linear distribution only at the mid section of the
beam which of course. conforms to the famous Saint Venant's
principle that the effect of end fixity does not disturb the stress
distribution far away from the edges. Moreover, the magni-
tude of oy at the top cc\rner of the fixed end is higher than that
at the bottom corner. But in case of elementary solution this
rnagnitude is essentiaily the same fcrr both top and bottom
corners of the fixed end" It is also observed that the fixed

o" = 
{  z f  4; '+ r ]

FIGURE 4
COMPAflISON OF THREE DIFFERENT SOLUTIONS
AT VARIOUS TRANSVERSE SECTIONS OF BOTH
ENDS FIXED DEEP BEAM ( a/b = 5)

6*u at section y=0.14
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boundaiies beco.tne more critical when the length of the beam

is increased, keeping the loading constant.

The sirearing stress distribution is shown in Fig 8 which shows

that there is ntl shearing stress at the mid section of the beam

(obvious from the problern) and it increases towards the ends

as expectedi Frorn ttre distribution, it is observed that variation

of fhis stress cornponent over the depth of the beam is alnipst

similar to that of elementary solutions over transverse sections

everywhore except near the fixed edges. Away from the

boundary, ttre distribution is parabolic in nature and, they are

irjeptical in nature and magnitude. From the elementary solu-

tion it is observed that the magnitude of shearing stress is

always maximum at the mid section of the beam. This is not

agreed by numerical solution and it differs mainly at the fixed

ends. The distribution is not parabolic at the fixed ends, rather

it is similar to that found by Filont' for the case of two

opposing forces on a long strip displaced by a short distancer2

This similarity in solution is observed here because the fixed

edges are subjected to the same kind of shear loading as that

of Filon and Timpe. Here, also the upper corner zone is more

critical than the lower zone and the n{ost critical section of the

beam in terms of shearing stress is at aboutT - 0.07

Solution of Deep Cantilevers

In case of deep carntilevers subjected to end shear, shown in

Fig 3, the boundary conditions, stated mathematically' are as

follows: .

At both the top and bottom edges; AB and CD,

o x G ,  l )  =  o y G ,  Y )  =  0  f o r 0  S  t  3  1 , 1  = O a n d l

At the left lateral edge, AC,
I

u6 , t )  =  vG, I )  =  0  fo r  0  <  t  <  l ,  Y  =  0 ,

and at the right lateral edge; BD,

6 y G , D  =  0

6 * y @ , Y )  =  -  a  q G '  - x )  f o r 0  <  t  S  1 ,  Y  =  I

where,  g=7.5 MPa

For this problem, the exact analytical solution is not known.

Both the elementary and the Q -solutions for this problem are,

6..,c = 0

6y = a@/b)  O -  1)  (27 - t )
-6x) = 4F -?)

Here also the present numerical solutions are fbund to be

identical with that of both the elementary and Q-solutions at

distances sufficiently away from the end. Distribution of

displacement componentfl along the neutral axis of the beams

is shown in Fig 9, which is observed to be identical with the

elemenrary solution having third orderpolynomial like behav-

FIGURE 6
DISTRIBUTION OF NORMAL STRESS COMPONENT
6x AT VARNOUS TRANSVERSE SECTIONS OF BOTH
ENDS FIXED DEEP BEAin (a/b = 5)

FIGURE 8 ]
DISTRIBUTION OF SHEARING STRESSd)0/ AT
VARIOUS TRANSVERSE SECT|ONS OF BOTH ENDS
FIXED DEEP BEAM (a/b = 5)

FIGURE 7
DtsrRtBUTlON OF LONGITUDINAL STRESS 6-y AT
VARIOUS TRANSVERSE SECTIONS OF BOTH ENDS
FIXECI DEEP BEAM (a/b = 5)

Y=.29 4.71
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iour. This figure also shows the elastic curve of the cantilevers
by elementary theory which is supposed to be valid for long
beams; the longer is the bearn, the higher is its accuracy. Of
course the beams under consideration here is rather short and
thus the predictions of elementary solution is supposed to
suffer from inaccuracy. Here, the percentage discrepancy in
deflection at the free end is observed to be almost zero for the
beam alb = 5. Moreover, the general trend of the curve and
the effect of a/b ratio on the distribution are also in good
agreement with the physical characteristics ofthe cantilever.

Distributions of relevant stress components at various sections
of the beam (a/b = 4) are shown in Figs 10 and I l..From the
graphs shown in Fig.10 it is evident that the fixed end of deep
cantilever is the most crilical section of the beam as far as
stresses are concerned. Here it is also seen that shear stress
does not resemble the parabolic distribution'given by the
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elementary theory, and there are very large stresses at the top
and bottom of the fixed end while the middle portion is
practically free from shearing stresses. One interesting thing
in noted that at higher a/b ratio the middle portion of the fixed
edge is under negative shear, while stresses are positive at lhe
upper and lower portions. This phenomenon is absent in case
of lower alb ratio as well as in both ends fixed beams.

From Fig 1 1, it is clear that the variation of stresses at section
sufficiently away from the boundary O = 0.5) is in good
agreement with the elementary solution where the shear dis-
tribution is parabolic and tlre longitudinal stress varies linearly
with distance from neutral axis. It is noted frorn the variation
of stresses atdifferent section of the beam that the closer the
section is to the ends. the more is the deviations from the

FIGURE 1O
DlSTRlBUTlOl,f OF NORMAL AND SHEARING
STRESSES AT THE FTXED END (y = O) OF A DEEP
CANilLEVER (a/b = 4)

FIGURE 12
COMPARISON OF v-$OLUTION AND STRAIN
GRADIENT SOLUnON (1990) AT SECTION x = tr2.5
OF UNIFORiILY LOADED DEEP CANTILEVER i
(20x 'O)

-2.5

or{kSl),

. 2.5

(kst)ory
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elementary solution. trt is also observed from numerical inves-
tigation that the bearn becomes more critical in terms of
various stress components when the length of the beam is
increased, whiie the loading rernains constant.

For comparison, the same problem is analyzed with equiva-
lent uniform shear at the free end. When. the results are
compared with that of parabolic end shear, they are found to
be identical" The major discrepancy appears at around the free
end. Moreover, the same example problem of Dow, Jones and
Halwoodr0 is also solved and the results are compared with
our ry-solutions, shown in Fig 12. The results of the two finite
difference analyses are found to be virtually identical.

CONCLUSIONS

This result has introducerJ a rnodification to the usual ap-
proach to the solution of boundary value elastic problems.
Here, attempt is made to obtain the numerical solutions of
deep beams through a new displacement formulation which
has a bright prospect in handling two-dimensional mixed
boundary-value stress problems of elasticity.

Earlier rnathematicatr models of elasticity were. very deficient
in hanclling practical problems. No appropriate approach was
available in literature rvhich could provide the explicit infor-
mation about.he distribution of stresses at he critical regions
of boundaries. The reasCIn for the superiority of the present
displacernent potential formulation over the existing ap-
proaches is its ability in satisfying the boundary conditions
oxactly, whether they are specified in terms of loading or
restraints or any combination of them and thus he solutions
obtained are promising and satisfactory for entire region of
interest. Moreover, the comparative study with elernentary
solutions verifies that the ele.mentary solutions are highly
approximate as they fail to provide the solutions in the neigh-
beiurhood of restraine<l boundaries.

The developments and exapple problems of deep beams have
displayed the successful implementation of the potential dis-
g:lacement approach. This work is aiso aprecursorto the exact

solution of more practical problems like stresses in gear teeth
and screw threads. Itis thus expected that, with time, this finite
difference version of the potential displacement formulation
would provide a powerful tool for solving problems in solid
mechanics and other engineering applications.
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