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Analysis of Stresses in Deep Beams using Displacement Potential
Function

- Sk Reaz Ahmed, Non-member
M R Khan, Non-member

K M S Islam, Non-member

Md Wahhaj Uddin, Non-member

This paper describes a numerical approach for the analysis of stresses of two dimensional boundary value
elastic problems. Specifically, it is on the investigation of stresses and deformations in various critical regions
of deep beams. An ideal mathematical model has been used to formulate the problem. The rationality and
practicability of the present formulation are firmly established here through the finite difference solutions of
deep beams. Results are also compared with the elementary solutions and as expected, the discrepancy is
observed to be quite appreciable, specifically at the fixed ends of the beams. The present investigation shows
that any fixed end of a deep beam is an extremely critical zone and the elementary theory of beams is quite

helpless in predicting the stresses in this zone.
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NOTATION

a : length of the beam in the y-direction

b : depth of the beam in the x-direction

E : elastic modulus of the material

q : applied maximum stress at the boundary of deep
beam

u : displacement component in the x-direction

u cu/b

14 : displacement component in the y-direction

v :v/b

x ix/b

y 1y/a

) rectangulaf coordinates

% : Poisson’s ratio

Ox  normal stress component in the x-direction

Oy : normal stress component in the y-direction

Oxy : shearing stress component in the xy-plane

i) : Airy’s stress function

s : potential function defined in terms of displace-
ments

Ox i ox/q -

o 0/q

Gy  :Oxy/q

INTRODUCTION

Problems of solid mechanics, have hardly lost interest of
researchers because they never got solved entirely to the
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satisfaction of all the physical conditions imposed on them by
the practical world. Even the most classical problems of
bending and twisting of a slender rod or beam by end forces
are constantly looked into with increasing sophistication in
their method of analysis' . The age-old Saint-Venant’s prin-
ciple is still applied and its merit is evaluated in solving
problems of solid mechanics in which full boundary effects
could not be taken into account in the solutiont process”’.

The management of boundary conditions and boundary
shapes have remained as the biggest hurdle in the solution
processes of the problems of solid mechanics. Photo-elastic
studies are being carried out for classical problems like uni-
formly loaded beams on two supports®~ qnly because bound-
ary effects could not be fully taken into account in their
analytical methods of solutions.

The difficulties involved in trying to solve practical elastic
problems using Airy’s® stress function are pointed out by
Uddin’ and also by Durelli’. The problem of boundary mana-
gement persists even in the finite difference solutions of
elastic problems using the displacements formulation. The u,
v- formulation involves finding two functions simultaneously
from two second order partial differential equations. But
solving for two functions satisfying two simultaneous second
order equations and variously mixed conditions on the bound-
ary is almost impossible’. In circumventing this problem,
Dow, Jones and Harwood'” have introduced a new boundary
modelling approach for fmite— difference applications of dis-
placement formulation of solid mechanics and solved the
problem of uniformly loaded cantilever beam. In this connec-
tion, they reported that the accuracy of the finite difference
method in reproducing the state of stresses along the boundary
was much higher than that of finite element analysis. How-
ever, they have noted that the computational effort of the finite
difference analysis under the new boundary modelling is even
somewhat greater than that of the finite element analysis.
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Considering all these shortcomings, an ideal numerical model
has been developed based on a new formulation'' to solve the
present problem. Here, the elastic problem has been formu-
lated in terms of a potential function y, defined in terms of
displacement components, which is considered as parallel to
Airy’s stress function ¢, since both of them have to satisfy the
same bi-harmonic equation, but free from its inability of
accounting the mixed boundary conditions.

FORMULATION OF THE PROBLEM

Analysis of stress in a material body is usually a three-

~ dimensional problem. In most cases, the stress analysis of

three- dimensional bodies can easily be treated as two-dimen-
sional problem, because most practical problems are often
found to conform to the states of plane stress or plain strain.
In case of the absence of any body forces, the equations
governing the three stress components Oy, Gy and ny under the
states of plane stress or plane strain are:

Sy @
2 2
(aaz'*'aJ(Gx"'Gy)“'o 3)

If the stress functions be replaced in equations (1), (2) and (3)
by displacement function u and v, which are related to stress
functions through the expressions,

e

Gx_l—v2[8x+vay:| (C))
- F tdv ou

Gy“l—vz[af ax} !
E dv

o 2(1+v)[ +8x] ©

then equation (3) is redundant and equations (1) and (2)
transform to -

u  [(1-v) du 1ty 8y
8x2+(2 ) By2+( 2 dxdy M
dy [l vy v [lev):du
8y2+[ 2 ] 8x2+( 2 ) Bxay—o ®

The problem thus reduces to finding # and v in a two-dimen-
sional field satisfying the two elhptlc partial differential equa-
tions, (7) and (8).

The problem is reduced to the determination of a single
function instead of two functions u and v simultaneously,
satisfying the equilibrium equations (7) and (8). In this for-
mulation, as in the case of Airy’s stress function ¢'* a potential
function y(x, y) is defined in terms of displacement compo-
nents as

0y

dx dy
- - __\L’ Iy
v—1+vli(1 V) +28}

When the displacement components in the equations (7) and
(8) are replaced by y(x,y), equation (7) is automatically
satisfied and the only condition that y has to satisfy, becomes
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Therefore, the problem is now formulated in such a way that
a single function y has to be evaluated from the bi-harmonic |
equation (9), satisfying the boundary condltlons that are speci-
fied at the edges of the beam.

In order to solve the problem using the present formulation,
the boundary conditions are also needed to be expressed in
terms of W and thus the corresponding relations between
known functions on the boundary and he function yare,

u e (10)
e [(1—v)5°—2—‘1’+2gz—“’] (1)
14V | e 8x2J
E Py vy
- - 12
1 Qv |:8x28y Y 8y3 e
G ﬁ+(2+v)—a—3—‘ﬂ— (13) |
2 1+ v|ay 940y
E Py 2y
- _ 14
- (1+v)z[vax8y2 Bxg} ()

As far as numerical method of solution of equation (9) is
concerned, it is evident from the expressions of boundary

~ conditions (10) to (14) that, no matter what combinations of

two conditions are specified on the boundary, the whole range
of conditions that y has to ‘satisfy,/’[equation (9) within the
body and any two of the equations (10) to (14) at points on
the boundary] can be expressed as finite difference equations
in terms of Y (x, y). Here, it should be pointed out that, for
Airy’s stress function formulation, the boundary conditions
known in terms of displacement components cannot be ex-
pressed in finite difference equations and hence the stress -
function formulation cannot be used for mixed boundary
value problems’.

SOLUTION PROCEDURE

The essential feature of this numerical approach is to get the
solution of the bi-harmonic equation (9) subject to the appro-
priate boundary conditions prescribed over the edges of the
beam. As far as the solution through the proposed displace-
ment function, yformulation is concerned, attention may be
drawn to the following points.

Method of Solution

The limitation and complexity associated with analytical so-
lution ultimately give rise to the fact that the numerical
solution for this class of problems is the only plausible ap-
proach. Here, finite difference technique is used to discretize
the bi-harmonic partial differential equation and also the
differential equations associated with the boundary condi-
tions. The discrete values of the displacement function
Y(X, y), at mesh points of the domain concerned (Fig 1) is
solved from the system of linear algebraic equations resulting
from the discretizaion of the bi-harmonic equation and the
associated boundary conditions.

IE(1) Journal - MC



FIGURE 1

i BESCBET!ZATBON OF THE DOMAIN IN RELATION TO
COORDINATE SYSTEM
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FIGURE 2

- BOTH ENDS FIXED DEEP BEAM SUBJECTED TO
UNIFORM LOADING AT THE TOP
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FIGURE 3 , ,
DEEP CANTILEVER SUBJECTED TO PARABOLIC
SHEAR AT THE FREE END
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Discretization of the Domain

The division of the domain into mesh points can be done in
any regular or irregular manner, but considering the rectangu-
lar shape of the boundary and also the nature of the differential
equations involved, rectangular grid points are used all over
the region concerned for numerical computation, Moreover,

to keep the order of error of the difference equations resulting

from the boundary conditions to a minimum, an additional
false boundary, exterior to the physical boundary, is intro-
duced.

Specification of the Boundary Conditions

As each mesh point on the physical boundary of he elastic
body always entertains two conditions at a time, one is used
to evaluate yat the points on the physical boundary itself and
the other for the corresponding points on the exterior false

boundary. Finally, the governing bi-harmonic equation is,

used only to evaluate yat the interior mesh points of the two-
dimensional body.
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Solution of Resulting Algebraic Equations

There are numerous existing methods of solving a system of
algebraic equations. The iteration method is advocated for
large sparse system of linear algebraic equations, but consid-
ering the most unfortunate part associated with the iteration
method not always converging to a solution and sometimes

" converging but very slowly, the present problem is solved by

the use of the direct method of solution which ensures better
reliability as well as possibility of getting more accurate
solution in a shorter period of time.

Evaluation of Stress and Displacement Components

Finally, the same difference equations are again organized for
the evaluation of all the parameters of interest in the solution
of deep beams from the y values at different points of the body
as all the components of stress and displacement are expressed
as summation of different derivatives of the function y

EXEMPLARY PROBLEMS AND DISCUSSIONS .

Numerical solution of elastic problems with mixed and
changeable boundary conditions had rarely been attempted in
the past because of the inability of handling these boundary
conditions in Airy’s stress function formulation of the prob-
lem. This problem is now satisfactorily tackled by present
formulation. The proposed displacement formulation is suc-
cessfully applied to analyze the state of stresses as well as
deformations in deep beams.

In obtaining numerical values for the present problem, the
beam as the elastic body, having a narrow rectangular cross
section of unit width, is assumed to be made of ordinary steel
(v =0.3, E = 200 GPa). Solutions age presented mainly in the
form of graphs. In order to make the results non-dimensional,
the displacements are expressed as the ratio of actual displace-
ment to the depth of the beam and the stresses are expressed
as the ratio of the actual stress to the maximum stress applied
at the boundary. Here, two specific problems of deep beams
are solved-—one is a both ends fixed beam and the other a
cantilever.

Solution of Both Ends Fixed Deep Beams

For the problem of both ends fixed beam, shown in Fig 2, the
opposing lateral edges (y = 0 and 1) are fixed, bottom edge
(x = 1) is free of loading and the top edge (x = 1) is subjected
to uniformly distributed compressive loading.

When the boundary conditions are expressed mathematically,
then, for the opposing lateral edges, AC and BD, the normal
and tangential displacements,

W =vx)=0 foibex=1 5 0adl
for the bottom edge, CD, the normal and tangential stresses,
G (% y) = Gy(x,y) = 0 for0 <y <1, x=1;
and for the top edge, AB, the normal and tangential stresses;
ox(x, y) = —-5MPa
Cxy® y) =0

The results obtained for this problem are shown in Figs 4 to
8. In the following discussions, three different solutions of the
same problem are referred to.

for@ =y < | % — 0

The first of these three solutions is the elementary solution
which is based on the assumption that the plane cross-sections
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of the beam remain plane under loading and the elastic curve,
that is the deformed shape of the neutral axis, is such that it
has a zero slope at the fixed end. The elementary solutions for
this problem are as follows:

5x=0

Gy = (a/ b) [35 S35 1/ 2] Q%=1

Gw=-3@/ b 23-1 [32 ——TCZ:!

The second one is the Airy’s stress function ¢-solution which
is, of course, free from the assumption of plane sections
remaining plane but the end fixity is accounted in the same
way as in the elementary solution and the results are claimed
to be accurate at a distance equal to or greater than the depth
of the beam from the fixed end, on accounts of Saint -Venant’s
Principle. The relevant ¢-solutions for this problem are,

S, = —[23?-3}% 1]
Gy= (-1 @A’ BF-37-12)+2F 2%+ 1/5)]
Sy = ~3(a/b) (-] -7

The third is the displacement potential function - solution
which is based on the complete satisfactions of the conditions
imposed on the beam in the real world. This solution is thus
expected to be identical with that of ¢- solution at distances
of the order of depth from the restrained edges and would
differ only in the regions near and at the restrained edges.

The present numerical solution predicts almost the same re-
sults as that of both elementary and ¢~ solutions for sections
at a considerable distance from the ends and the relevant
comparison of the three solutions are shown in Fig 4. This
establishes the fact that the y-formulation of the problem is
free from any conceptual error and mathematical procedure,
and no error is committed in the computational procedure for
V. Fig 5 shows the distribution of displacement component
u along the neutral axis of the beam of Fig 2, for different
length to depth ratios. Here; the effect of a/b ratio on the
distribution conforms to the fact that, at lower a/b ratio, the
end effects become very prominent and provides restriction
to the deflection of the beams.

Fig 6 shows the distribution of normal stress component Gy
with respect to x at various transverse sections of a particular
beam (a/b = 5). From the graph, it is evident that the distribu-
tion of Gy at the fixed ends is quite different from other sections
of the beams and also the fixed end is observed as the most
critical section of the beam as far as Gy is concerned. As
appears from the graph (Fig 6), magnitude of Gy at the top face

(x=0) is always unity and zero at the bottom face (x= 1)

which, in turn conforms to the fact that the numerical formu-
lation is capable of reproducing the state of stresses exactly
either at or away from the boundaries. Here, also the
¢ -solution of the problem, independent of y, is compared
with y -solution and is observed to be identical at section
y=0.5. :

Fig 7 shows the variation of the normal stress component Gy
at various transverse sections of the beam, Here also the fixed
ends are observed as the most critical section with respect to
other sections of the beam. This variation of normal stress
components in the direction of y is analyzed mainly to com-
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pare how the elementary solutions differ from that of the
numerical solutions. In elementary solution it is assumed that
the distribution varies linearly with distance from neutral axis
and the magnitude is equal at the top and bottom fibers. As
evident from Fig 7, the solutions obtained through the present
formulation differ from that of elementary solution in the
sense that the distribution is far off from linear, rather it
approaches to linear distribution only at the mid section of the
beam which of course, conforms to the famous Saint Venant’s
principle that the effect of end fixity does not disturb the stress
distribution far away from the edges. Moreover, the magni-
tude of Gy at the top corner of the fixed end is higher than that
at the bottom corner. But in case of elementary solution this
magnitude is essentially the same for both top and bottom
corners of the fixed end. It is also observed that the fixed

FIGURE 4

COMPARISON OF THREE DIFFERENT SOLUTIONS
AT VARIOUS TRANSVERSE SECTIONS OF BOTH
ENDS FIXED DEEP BEAM ( a/b = 5)
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FIGURE 5

DISTRIBUTION OF DISPLACEMENT COMPONENT v
ALONG THE NEUTRAL AXIS OF BOTH ENDS FIXED
DEEP BEAMS
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boundaries become more critical when the length of the beam
is increased, keeping the loading constant.

The shearing stress distribution is shown in Fig 8 which shows
that there is no shearing stress at the mid section of the beam
(obvious from the problem) and it increases towards the ends
as expected. From the distribution, it is observed that variation
of this stress component over the depth of the beam is almost
similar to that of elementary solutions over transverse sections
everywhere except near the fixed edges. Away from the
boundary, the distribution is parabolic in nature and, they are
identical in nature and magnitude. From the elementary solu-
tion it is observed that the magnitude of shearing stress is
always maximum at the mid section of the beam. This is not

FIGURE 6

DISTRIBUTION OF NORMAL STRESS COMPONENT
Sx AT VARIOUS TRANSVERSE SECTIONS OF BOTH
ENDS FIXED DEEP BEAM (a/b = 5)
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FIGURE 7
DISTRIBUTION OF LONGITUDINAL STRESS oy AT

VARIOUS TRANSVERSE SECTIONS OF BOTH ENDS
FIXED DEEP BEAM (a/b = 5)
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FIGURES : »
DISTRIBUTION OF SHEARING STRESS Gxy AT
VARIOUS TRANSVERSE SECTIONS OF BOTH ENDS
FIXED DEEP BEAM (a/b = 5)
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agreed by numerical solution and it differs mainly at the fixed
ends. The distribution is not parabolic at the fixed ends, rather
it is similar to that found by Filon"” for the case of two
opposing forces on a long strip displaced by a short distance"
This similarity in solution is observed here because the fixed
edges are subjected to the same kind of shear loading as that
of Filon and Timpe. Here, also the upper corner zone is more
critical than the lower zone and the nfost critical section of the
beam in terms of shearing stress is at about x = 0.07

Solution of Deep Cantilevers

In case of deep cantilevers subjected to end shear, shown in
Fig 3, the boundary conditions, stated mathematically, are as
follows:

At both the top and bottom edges, AB and CD,

6x® ) =0y y) =0 for0 <y <1 x=0andl
At the left lateral edge, AC,

‘u(i,i)=v(—i,§)=0 for 0 <
and at the right lateral edge, BD,

6y y) =0

oxy(, y) = -4 g -7%) for0
where, g = 7.5 MPa

For this problem, the exact analytical solution is not known.
Both the elementary and the ¢ -solutions for this problem are,

=|
IA

IA
|
IN
e
<I
Il

_d_x = 0 3

Gy=4@h @ -1)2x -1)

Gy=4F-7)
Here also the present numerical solutions are found to be
identical with that of both the elementary and ¢-solutions at
distances sufficiently away from the end. Distribution of
displacement component % along the neutral axis of the beams

is shown in Fig 9, which is observed to be identical with the
elementary $olution having third order polynomial like behav-
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FIGURE 9

DISTRIBUTION OF DISPLACEMENT COMPONENT u
ALONG THE NEUTRAL AX!S OF DEEP CANTILEVERS)

T T T

w-solution
Elementary solution

020

T

.015

) {\\\\\\\\\\\J
. \

D

PUS
|

.010

.005

FIGURE 10

DISTRIBUTION OF NORMAL AND SHEARING
STRESSES AT THE FIXED END (y = 0) OF A DEEP
CANTILEVER (a/b = 4)
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iour. This figure also shows the elastic curve of the cantilevers
by elementary theory which is supposed to be valid for long
beams; the longer is the beam, the higher is its accuracy. Of
course the beams under consideration here is rather short and
thus the predictions of elementary solution is supposed to
suffer from inaccuracy. Here, the percentage discrepancy in
deflection at the free end is observed to be almost zero for the
beam a/b = 5. Moreover, the general trend of the curve and
the effect of a/b ratio on the distribution are also in good
agreement with the physical characteristics of the cantilever.

Distributions of relevant stress components at various sections
of the beam (a/b = 4) are shown in Figs 10 and 11. From the
graphs shown in Fig 10 it is evident that the fixed end of deep
cantilever is the most critical section of the beam as far as
stresses are concerned. Here it is also seen that shear stress
does not resemble the parabolic distribution given by the
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elementary theory, and there are very large stresses at the top
and bottom of the fixed end while the middle portion is
practically free from shearing stresses. One interesting thing
in noted that at higher a/b ratio the middie portion of the fixed
edge is under negative shear, while stresses are positive at the
upper and lower portions. This phenomenon is absent in case
of lower a/b ratio as well as in both ends fixed beams.

From Fig 11, it is clear that the variation of stresses at section
sufficiently away from the boundary (y = 0.5) is in good
agreement with the elementary solution where the shear dis-
tribution is parabolic and the longitudinal stress varies linearly
with distance from neutral axis. It is noted from the variation
of stresses at different section of the beam that the closer the
section is to the ends, the more is the deviations from the

FIGURE 11 :
DISTRIBUTION OF NORMAL AND SHEARING
STRESSES AT SECTION y = 0.5 OF A DEEP
CANTILEVER (a/b = 4)
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FIGURE 12

COMPARISON OF y-SOLUTION AND STRAIN
GRADIENT SOLUTION (1990) AT SECTION x = 12.5
OF UNIFORMLY LOADED DEEP CANTILEVER
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elementary solution. Itis also observed from numerical inves-
tigation that the beam becomes more critical in terms of
various stress components when the length of the beam is
increased, while the loading remains constant.

For comparison, the same problem is analyzed with equiva-
lent uniform shear at the free end. When the results are
compared with that of parabolic end shear, they are found to
be identical. The major discrepancy appears at around the free
end. Moreover, the same example problem of Dow, Jones and
Harwood" is also solved and the results are compared with
our y-solutions, shown in Fig 12. The results of the two finite
difference analyses are found to be virtually identical.

CONCLUSIONS

This result has introduced a modification to the usual ap-
proach to the solution of boundary value elastic problems.
Here, attempt is made to obtain the numerical solutions of
deep beams through a new displacement formulation which
has a bright prospect in handling two-dimensional mixed
boundary-value stress problems of elasticity.

Earlier mathematical models of elasticity were very deficient
in handling practical problems. No appropriate approach was
available in literature which could provide the explicit infor-
mation about he distribution of stresses at he critical regions
of boundaries. The reason for the superiority of the present
displacement potential formulation over the existing ap-
proaches is its ability in satisfying the boundary conditions
exactly, whether they are specified in terms of loading or
restraints or any combination of them and thus he solutions
obtained are promising and satisfactory for entire region of
interest. Moreover, the comparative study with elementary
solutions verifies that the elementary solutions are highly
approximate as they fail to provide the solutions in the neigh-
bourhood of restrained boundaries.

The developments and example problems of deep beams have
displayed the successful implementation of the potential dis-
placement approach. This work is also a precursor to the exact
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solution of more practical problems like stresses in gear teeth
and screw threads. It is thus expected that, with time, this finite
difference version of the potential displacement formulation
would provide a powerful tool for solving problems in solid
mechanics and other engineering applications.
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