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The stability of a toroidal pipe-reducer system is determined here from the
solution of non-linear governing equations of axisymmetric deformations of
shells of revolution. Numerical solutions are obtained by a modified version of
the computer program developed by uddin for solving the governing
equations of axisymmetric shells by the multisegment method of integration.
The interpretation of instability of the toroidal reducers is based on
Thompson's theorems I and II. Critical pressures for the toroidal reduers are
calculated over useful ranges of the curvature ratio, the thickness ratio, and
the diameter ratio. It has been found that the critical pressure of these
reducers varies almost linearly with the diameter ratio and that the long
toroidal reducers are prone to local instability near the larger end. But this
critical zone occurs near either one of the two ends as the reducer becomes
shorter. The results of stability and stress analysis of toroidal pipe-reducers arp
compared here with those of conical reducers obtained by Ali and parabollb
reducers obtained by Rahman. Comparison shows that toroidal reducers
develop uniform stresses of lower magnitude conipared to the other two.
Further, toroidal reducers are found to sustain higher critical pressure than
parabolic reducers except at higher diameter ratio. @ 1997 Published by
Elsevier Science Ltd.

NOMENCLATURE

C, D Extensional rigidity, bending ridigity
e_ (1 - v'z)€"/R
D 1l[12(I - y)FTzRl
E, v Young's modulus, Poisson's ratio'
H, V Radial and axial stress resultants
H,v HIPR, Vlpn
h Shell thickness
ke, kt Changes of curvature of the middle surface

of shell
Er, E* k6{., k6€"
L  R I P . T
Ms, Me Meridional and circumferential couple

resultants
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Middle surface strains
e rEh{"/ PR2, erEh{./ PR'
Distance measured along meridian, €lt.
Total meridional length, between the
centre of the smaller end and the larger
end junction
Angle between normal and axis of
symmetry before deformation (meridional
angle), Qo- F

cai,, cao Meridional stresses at the inner and outer
wall surfaces of the reducer

cci, oco Circumferential stress at the inner and
outer wall surfaces of the reducer

(. . .)' Derivative with respect to { or f
Gu,, duo a"1l(PRlh), o"" l(PRlh)
d.i ,  d.o o. i l  (PRl h), n"" l  (PRl h)

INTRODUCTION

Large-size pipe-reducers can be considered as thin
axisymmetric shells. These thin shells, in general, can
transmit the surface load primarily through the
uniformly distributed in-plane membrane forces by
virtue of their curved surfaces, without the action of
bending or twisting. This property makes them, as a
rule, a much more rigid and more economical
structure than a plate. Further, shells are becoming
thinner with the passage of time because of the
improving strength of materials and the development
of new stronger materials. Consequently, to-day's
thinner structures are more prone to failue due to
instability than due to strength. Buckling usually
results in abrupt changes in the shape of the structures
which ultimately leads them to failure because of the
enormous deformations of an initially stable equili-
brium position.

Analysis of thin shells having sharp changes in
meridional curvature invariably passes into the
domain of non-linear mathematics. That linear shell
analysis fails to give proper informations about the
shell stresses and deformations in many problems can
be seen in recent papers on the non-linear shell
analysis of Thurston.l'2 For this reason, the use of
non-linear theory has become rather widely accepted
as a plausible basis for predictions of elastic strengths
and stability of shells of various geometries. It should
be mentioned here that the stability analysis is
justifled for thinner reducers of larger reduction ratio.
The present analysis is thus for thinner reducers with
varying diameter ratio.

Non-linear shell analysis involves complex mathe-
matics and can not be solved in closed form. For that
reason most of the theoretical works on shell analysis
are based on various approximations. These include
approximations in the derivation of the governing
equations, in the presentation of the geometry of the
undeformed shape, in devising methods of solutions of

the governing equations and, finally, in obtaining the
solutions of the governing algebraic and differential
equations by using some numerical techniques.

Finite element and finite difference techniques are
most often used for solving non-linear problems of
solid mechanics.3-1l Some of the general purpose
computer codes developed on these methods are
BOSOR4,' ' BOSOR5," ANSR, ANd STAGSC1  fOr
shells of revolution. A critical review of such
programs, namely of BOSOR4 and BOSOR5, is
presented in Refs [15, 16]. To eliminate the drawbacks
of the above computer codes, UddinlT has developed a
computer program for the analysis of composite shells
of revolution. He has obtained extensive numerical
results on spherical, ellipsoidal, conical and composite
head pressure vessels based on both the linear and
non-linear theories and also on the buckling pressures
of general spherical shells and semi-ellipsoidal
shells.ls-2o In all these investigations, he has shown the
conservativeness of linear theory and demonstrated
the superiority of non-linear analysis. Later Haquel6'2t
carried out the buckling analysis of ellipsoidal shells of
revolution under external pressure and Rahman22
extended it to include imperfection in geometry.

An23 carried out the stability and stress analysis of
general truncated conical shells, used as pipe-reducers.
In his work, Ah23 pointed out that the critical load for
a conical reducer decreases almost linearly with
increasing apex angle of !h" conical frustum.
Rahman2a analysed the stability and stresses of
parabolic pipe-reducers. In his investigation, Rahman
showed that doubly curved truncated parabolic shells
can sustain a higher critical load than singly curved
conical frustum. But fabrication of a parabolic shell is
quite difficult. Instead of a toroidal shell, another
doubly curved shell may be analysed for its suitability
under external loading.

The present study deals with the stability analysis of
toroidal shells. In the present analysis, the governing
non-linear equations of axisymmetric deformations of
shell of revolution which ensure the unique state of
the lowest potential energy are solved for increasing
value of load parameter. At each load step the
appearance of the second mode is looked for. The
onset of the flrst bifurcation point is usually indicated
by a substantial increase in the displacements and
stresses of the shell for a very small increase of the
load parameter. In the case of snap buckling at the
bifurcation point any increase in load, however small,
produces enormous deformation and thus the
numerical technique used here fails to converge to any
solution.

The multisegment method of integration of
Kalnins2s is used here to solve the non-linear
governing equations of the axisymmetric shells. The
main advantage of this method over the others is that
the solution is obtained with uniform accuracy with
respect to mesh size. Further any discontinuity, either
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in geometry or in loading, can be easily handled by
requiring that the end points of the segments coincide
with the location of discontinuities.

GOVERNING EQUATIONS FOR ANALYSIS
OF TOROIDAL REDUCBRS

Non-linear governing equations for the axisymmetric
buckling of toroidal reducers, based on Reissner's
large deflection theory of shells,26'27 are derived and
presented here after necessary modifications. The
variables and shell parameters are deflned in Figs L
and 2. The critical pressure for a particular reducer is
interpreted here from the observation of the
bifurcation point on its fundamental equilibrium
configuration path. In case of snap buckling, the
bifurcation point was further confirmed by the failure
of the technique to converge even for a very small
increase of the load parameter.

In determining the critical pressure, the equilibrium
configuration path is traced against increasing load.
Here the external pressure is increased by small
increments and the appearance of a second mode is
looked for. The appearance of the second mode
always corresponds to the critical loading. Here the
critical pressures are evaluated for different toroidal
reducers with varying values of the diameter ratio, the
thickness ratio and the curvature ratio. The governing
equations in terms of variables in Figs L and 2 are

ts :  u lTs

Q :  Q o -  P

E6: (sin do - sin Q)lro

N * : H c o s  O + V  s i n @

ts: eNa - vEe

Er: tvtrlD - vE,
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a :  L +  e ,
;

f : L . f o + U

w ' : a s i n 0 - L s i n @ 6

i l ' : a c o s @ - L c o s @ 6

(1a)

(1b)

(1c)

(1d)

(1e)

(1f)

(1e)
(1h)

(1i)

(1i)
(1k)

(11)

(1m)

(1n)

H ' , : - " ( H  c o s @  - N d l r + F , T  s i n @ )  ( 1 0 )

ML: a cos Q@It- Utl lr
- dFT2@ sin ,f - 7 cos d)

toroidal pipe-reducer 205

(c)

Fig. 1. (a) Middle surface of a shell. (b) Side view of
element of shell in deformed and undeformed states. (c)

Element of shell showing stress resultants and couples.

B ' : k t

V':  -a cos 0Flr -  FT)

(1p)

Equations (1) are arranged in such a way that, when
evaluated serially they' are in terms of the six
fundamental variables u, w, B, i, E, and IuIr.
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BOUNDARY CONDITIONS

The general boundary conditions to be specified on an
edge {1 : constant of a shell are, in Sander's28
notations,

Ny or u1,

l/rz + ,QR;t - R,,t)M.,r+ L(N",, + Nrr)Q ot Lt2,

er + a;t Wz- d,N,, - erN' or w (2a)
dt ' t

and

Ml, or Q1,

wheqe l/ and M are the stress and couple resultants;
f s are the rotations about respective axes; u and w
are tangential and normal displacement components;

P. "Dutta et al.

(b)

Fig.2. (a) Geometry of a toroidal reducer. (b) Toroidal reducer with clamped edge.

"r  

R,
f : \

/g,  
- . . .  

\l ' t  - - .
J _ _ _ _  \

- t .

6r and (2 are the shell coordinates along the principal
lines of curvature.

For axisymmetric deformations of shells of revolu-
tion they reduce to

N11 Ot t t  1,

Qt - frNy or w,

and

M11 or $1,

on an edge f1 : constant. From (2b) it is seen that the
boundary conditions consist of the specification of
rotational, tangential and normal restraints at the
edge. But in most of the practical shell problems the
conditions of the horizontal and vertical restraints are
known rather than those of the normal and tangential

(2b)
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restraints. So it is preferable to specify the boundary
conditions in terms of the horizontal and vertical
restraints from the point of view of practical
application. Under this condition, the boundary
conditions will be in terms of
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of the reducer, (b) reduction ratio R1-the ratio of
smaller-end to larger-end radii, (c) curvature ratio
R,-the ratio of the radius of toroidal arc to the radius
of larger-end. To obtain the solutions of different
reducers, any two of the parameters are kept constant
while the third is varied. In the present study, the
thickness ratio and the reduction ratio are kept
constant and the curvature ratio is varied within an
appropriate range. Then either the value of T or R, is
varied and the solution is obtained again for the useful
range of R,. In this study the curvature ratio R. ranges
from L.5 to 2.5. The values of T and R, studied here
are; 7:500, 1000, 1500 and R1 :0.3, 0.5, 0.7 and
0'9. The critical pressure of the reducers for a given
value of thickness ratio is plotted against reduction
ratio for different values of the curvature ratio
(R.: 1.5,2.0,2.5) in Fig. 3(a-c). Figure 3 shows that
critical pressure increases with increasing reduction
ratio at a constant curvature ratio as well as with
increasing curvature ratio at constant reduction ratio.
That is, the larger is the reduction ratio of the reducer
the higher is its ability of sustaining external pressure.
The critical pressure of the reducers for a given
curvature ratio is plotted against reduction ratio in
Fig. 3(d) for thickness ratios 500, L000 and L500. From
this figure it is evident that critical pressure varies
linearly with reduction ratio and thickness ratio, linear
empirical formula for critical pressure as a function of
reduction ratio can be used for,.the toroidal reducers.
It should be noted that if th6 reduction ratio and
thickness ratio are kept constant, the meridional
length increases with the increase of curvature ratio.
Consequently, for a given reduction ratio and
thickness ratio, the critical pressure increases with
increase of curvature ratio as shown in Fig. 3. At
higher curvature ratio, it behaves like a cylindrical
shell.

Table L shows a comparison of critical pressures of
the conical, parabolic and toroidal pipe-reducers
having identical edge conditions. It presents the
critical pressures for conical pipe-reducers of an apex
angle of 60" and for toroidal pipe-reducers of a
curvature ratio, R":2'5. As seen from this table, for a
reduction ratio of 0.5 and a thickness ratio of 500, the
critical pressure of toroidal reducers is I.7 times
greater than that of conical reducers of an apex angle
of 60" and 1.03 times greater than that of parabolic
reducers.

The superiority of the toroidal reducer over conical
reducer regarding stability becomes more significant
with increasing thickness ratio and increasing reduc-
tion ratio. For example, for T: 1500 and R1 :0.7,
the critical load for a toroidal reducer is 2.1 times that
of a conical reducer of an apex angle of 60'. It should
be mentioned here that the stability of a conical
reducer decreases as the apex angle increases.l On the
other hand, Table 1 shows that toroidal reducers are
slightly more stable than parabolic reducers for a

H o r u ,

Mr or B, (2c)

and

V o r w .

on the edge f : constant. Therefore, for both-ends
flanged toroidal reducers the boundary conditions are

tr = 0, w :0, F :0 at both the ends.

METHOD OF ANALYSIS

The steps followed in finding the critical pressure are
as follows:

i. The linear governing equations of the shell are
solved by the multisegment method of integration
as developed by Kalnins and Lestingi.25 With the
linear solution providing initial values to the
dependent variables, the non-linear equations are
solved by the process of iteration at the initially
assigned load.

ii. The non-linear equations are then repeatedly
solved for increasing values of the load parameter
while the initial values for iteration process at any
step of load parameter are provided by the
solution for immediate previous step of loading.

iii. If any step of the scheme in increasing the load
parameter in steps the iteration process fails to
converge, then it first subtracts the previous load
increment from the current loading, halves the
load increment and adds it to the previous
loading to arrive at the new normalized loading.
In this way the equilibrium configuration path is
traced against increased loading.

iv. The critical pressure is anticipated from the
load-displacement curves. The equilibrium con-
figuration path is traced against increasing loading
and the appearance of a secondary mode of
deformation is searched. This appearance of a
second mode always corresponds to the bifurca-
tion point as pointed out by Thompson.2e

RESULTS AND DISCUSSION

The present investigation uses the following para-
meters to describe the toroidal reducers: (a) thickness
ratio T-the ratio of larger-end radius to the thickness
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(a)

0.6
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(b)

5.4

5.3

5.2
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5.1
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1.36

1.28
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0.80.4
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(c)

Fig. 3. Criticaf load of toroidal reducer for (a)-(c) varying reduction ratio, (d) different thickness ratios.
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0.6

Rcduction ratio,Fl

(d)
Fig.3. (Continued.)
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F" x 106

0.80.4

Thickness Reduction
ratio ratio

T R ,

Critical pressure, f.x fi-j

Table 1. Comparison of critical pressure of toroidal, para-
bolic and conical pipe-reducers with clamped edges for

different thickness ratios

develop stresses of much lower magnitude compared
to toroidal reducers, especially at the larger-end. The
magnitude and distribution of stress are almost
identical at the smaller end for both types of reducer,
if they are long. For short parabolic reducers the stress
at the smaller end is large than that at the larger end
as in Fig. 4(a-d). On the other hand, for long toroidal
reducers, the stresses are high at both the ends, but
highest at the larger end, as shpwn in Fig. 5(a-d).

For toroidal reducers. the rion-dimensional circum-
ferential stresses (o"i and c-"o) remain almost constant
or fluctuate within a very small range along the entire
meridional length. But the circumferential strossos
fluctuate widely at the two ends. From Figs 4(a, b) and
5(a, b) it is found that circumferential stress has a
greater magnitude near the larger ends. But the
circumferential stress distribution in a parabolic
reducer decreases along the reducer's meridian from
smaller end to larger end.

The pattern of non-dimensional meridional stress
distribution is almost identical in both the parabolic
and torioidal reducers having identical parameters and
boundary conditions as seen in Figs 4(c, d) and 5(c, d).
For a toroidal reducer, the non-dimensional meridi-
onal stress at the larger end is slightly greater in
magnitude than that at the smaller end. On the other
hand, the non-dimensional meridional stress level at
the smaller end is higher than that at the larger end in
a parabolic reducer, shown in Figs 4(c) and 5(c). It has
been found that under uniform external pressure the
meridional stress at the inner surface is of the highest
magnitude among the four components of stresses
(o"r, o"o, cui, auo) in both the reducers. It is also seen
from Fig. 4(c) that the maximum non-dimensional
meridional stress occurs at the inner surface, and the
value of this stress is 1.6 at the smaller end and 0.4 at
the larger end in a parabolic reducer. But for an
identical toroidal reducer the same stress is 1.4 at the

Conical
reducer

of apex angle
60"

Parabolic Toroidal
reducer reducer

o f  R " :2 ' 5

500

1000

1500

0.3
0.5
0.7
0.9
0.3
0.5
0.7
0.9
0.3
0.5
0.7
0.9

lroo
27.00

?o0
6-40

*n
2.70

50.00
51.00
55.00

100.00
11.30
11.40
12.40
19.30
5-02
5.30
5-62
9.60

51.00
52.60
52.90
55.50
12.80
12.90
13.10
13.70
5.60
5.62
5.67
5.81

given pressure except at higber reduction ratio
(Rr :0'9)._For thickness ratio 7 : 1000 and reduc-
tion ratio Rr :0.7, the critical pressure of the toroidal
reducers are 1.05 times of that of parabolic reducers.
But, at the same time, for thickness ratio 7: 1000
and reduction ratio Rr :0.9, the critical pressure of
parabolic reducers is 1,.4 times that of toroidal
reducers of identical parameters. Therefore, at higher
reduction ratio, toroidal reducers are preferable to
parabolic reducers.

The stresses under uniform external pressure in a
toroidal reducer and in an identical parabolic reducer,
having the same thickness ratio and reduction ratio,
are presented in Figs 4 and 5. It should be mentioned
here that the same clamp-edged boundary conditions
are considered for the comparison. From the above
mentioned flgures, it is evident that parabolic reducers
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Parabolic Reducer atF" = 5.63 X l0-7

Toroidal R.educer atF" = 5.64 X lO7

t .2

0.8

6ci

0.4

0.0

-0.5

0.30 0.45

0.45

0.90

i
(a)

Parabolic Reducer atFc = 5.63 X lO7

.'..-.-.- Toroidal Reducer at { 
: 5.64 X l0'7

0.60 0.75

0.75

1.05

";

2,0

1 .5

1 .0

0.5

0.0

-0.5
0.30 0.75

E
(c)

Fig. 4. Non-dimensional circumferential stresses at (a) the inner surface of
surface of parabolic and toroidal reducers, (c) non-dimensional meridional
toroidal reducers at P.:5.63x 10-?, (d) non-dimensional meridional stresses

reducers.

0.90

parabolic and toroidal reducers, (b) the outer
stresses at the inner surfaces of parabolic and
at the outer siirfaces of parabolic and toroidal

0 3 0 0.60 1.05

E
(b)

2.0
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6 .-  1 .0
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0.0
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Parabolic Reducer utF. = 5.63 X l0'7

Toroidal Reducer atF" = 5.64 X l0'7

2L1,

6r"

- l
0.30 0.60 0.75

9

(d)
Fig.4. (Continued.)

Toroidal Reducer at?" = 12.5 X rc-7

Parabolic Reducer utF" = I1.7 X l0 7

0.2

0.45 1.050.90

0.8

0.7

4'
0.6

0.5

0.4

0.3

0.8

0.6

to 
0.4

0.2

0.0

-0.2

0.5 0.7

E
(a)

l . l1 . 00.80.40.3 0.9

1 . 0
T
R l

Toroidal Reducer utF" = 12.5 X l0'7

Parabolic Reducer utF" = I1.4 X l0-7

0.2

5

(b)

Ftg. 5. (a) Nor-dimensional circumferential stresses at the inner surface of parabolic and toroidal reducers, (b)
not-dimensional circumferential stresses at the outer surface surfac.e of parabolic and toroidal reducels, (c) meridional stresses
at inner sufaces of parabolic and toroidal reducers, (d) meridional stresses at outer surfaces of parabolic and toroidal reducers-

l . l1.00.90.80.70.60.50.40.3
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Toroidal Reducer at F" = 12.5 X rc-7

Parabolic Reducer at F- = I 1.4 X l0'7

0.2 0.3 0.4

Toroidal Reducer atT" = 12.5 X rcn
.-.---.-. Parabolic Reducer atf : ll.4 X l07

E
(d)

Fig.5. (Continued.)

1 .5

1.2

o .-  0.8

0.4

0.0
l . l1.00.90.80.70.60.5

6
(c)

oto 
o

smaller end and L.65 at the larger end. Considering
stresses, parabolic reducers are seen to be slightly
superior to toroidal reducers. The superiority of the
parabolic reducers is found to be true for other
thickness ratios and reduction ratios. But the stresses
in a parabolic reducer are sufficiently smaller than
those in the toroidal reducers as to lead to any clear
preference for the parabolic reducers over the toroidal
ones.

Ali23 showed that the load carrying capacity of a
conical reducer decreases almost linearly with the
increase of apex angle and the reducer with the
optimum apex angle at 60" has the highest load
carrying capacity. But Rahmanz4'3o showed that the
stresses in a conical nozzle of 60' apex angle are
2-0-2-5 times higher than those of parabolic reducer.
As the maximum stress developed in the toroidal
reducbrs is almost close to that of parabolic reducer,

- l
l . lt .00.90.80.70.60.50.40.30.2

so it can be concluded that the toroidal reducers are
superior to conical reducers of identical parameters.

From the pressure versus displacement plots, for
pressure near and at the critical state, it can be seen
that the maximum axial and radial displacements
increase at ever increasing rute with the increase of
external pressure [Figs 6(a,b) andT(a,b)]. Eventually
a level of external pressure is reached when a small
increase in pressure causes enormous displacements of
the shell meridian, that is, the shell meridian
undergoes displacements with virtually no increase in
the pressure.

An interesting observation from the present analysis
is that long toroidal reducers are prone to local
instability at the larger end as shown in the buckled
configurations of the reducers in Fig. 7(c).Here the
adjacent material points on the shell meridian are
severely displaced in opposite directions resulting in
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0.60.50.40.0. l

r l
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-0 0.1 0.2

f ix 107
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2

E= o.r\ !-= 0.er

E= 0.e8
€ = 1 .

I

0
-12

0.0

-10 -24-6-8
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&
>
g 0.97s
Eu,
€ 0.950
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E o.szs

0.900

ii x 107

0.2 0.4 0.6

Axial distance (z/R)
(c,

Fig.6. (a) Axial displacements, (b) radial displacements and (c) buckled configuration of toroidal reducer.

crooked deformation of the reducers near the larger
end. On the other hand, short toroidal reducers are
most critically stressed both near the larger end as
well as near the smaller end as seen in Fig. 6(c). Thus
short toroidal reducers are prone to local instability at
the two ends. It should be mentioned here that for
both long and short reducers the intermediate part of
shell meridian remains unaffected.

The stress variations along the shell meridian in the
reducer of 7: 1500, Fr = 0'9 and R":2'5 and also in
the reducer of 7: 1500, Rr :0'3 and R,:2'0, shown

on Figs 6(d-g) and 7(d-g), are in complete harmony
with their failure pattern as indicated in Figs 6(c) and
7(c). It is observed that, in a long reducer, the
materials near the larger end are most critically
stressed as shown in Fig. 7(d-g). Conversely, in a
short reducer, the critical zone spreads towards both
the 'ends as seen in Fig. 6(d-g), indicating the
likelihood of local instability near the two ends.
Therefore, longer toroidal reducers have buckling
tendency near the larger end. On the other hand,
short reducers are weak at both the ends. Further,

2t3

Shapc at critical load

Post critical shape
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o
to

-1
0.5 0.6 0.7 0.8 0.9 1.0 1.1

E (e)
Fig. 6(9). Meridional stresses at outer fiber of toroidal reducer.

increasing reduction ratio increases the load bearing
capacity.

From this study it is observed that elastic buckling is
more likely to occur in thin shells prior to yielding
than in thick shells. As for example, at the critical
pressure P.: 5'8t X 10-7 of the toroidal reducer of

R,:2'5, Rr : 0'9, and 7 : 1500, the maximum
non-dimensional stress, al(PRlh), is the meridional
stress of the inner fiber at the larger end, f - 1.0, Fig.
6(f). Its value is 1.62. For steel, the actual value of the
stress comes out to be 292.2MPa. The yield strength
of the medium quality steel is as high as 1200 MPa.

fix 107 
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Fig.7. (a) Axial displacemOnts and (b) radial displacements.
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Fig. 7. (c). buckled configuration of toroidal reducer.
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Fig. 7(d). Circumferential stresses at inner fiber of toroidal reducer.
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Fig. 7(e). circumferential stresses at outer fiber of toroidal reducer.
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Therefore the induced maximum stress is well below
the yield strength at this critical pressure.

CONCLUSION

From this investigation it may be concluded that
toroidal pipe-reducers are far superior to conical
reducers as they develop uniform stresses of lower
magnitude under the same level of external loading.
Regarding stability, toroidal reducers are superior to
parabolic reducers at higher reduction ratio, but at
lower reduction ratio, parabolic reducers can sustain
higher load than toroidal reducers. It is also observed
that toroidal reducers are much more stable than the

0.8

(f)

conical reducers under uniform external pressure. The
ratio of the critical pressure of a toroidal reducer to
that of a conical reducer (with identical parameters)
increases with increasing thickness ratio, increasing
diameter ratio, and increasing curvature ratio. As
curvature ratio increases, a toroidal reducer can
sustain increasingly higher load than parabolic
reducers of identical parameters. Keeping everything
the same, a toroidal reducer of larger curvature ratio
will be stronger than one with smaller curvature ratio.

It has been found that the regions near the fixed
edges are most critically stressed. It has also been
observed that long toroidal reducers (lower diameter
ratios) are critically stressed near the larger end but
this critical zone may also occur at the smaller end as
the diameter ratio is gradually increased.

0.6
?

Fig. 7(f). Meridional stresses at inner fiber of toroidal reducer.

0.0 0.2

Fig, 7(g). Meridional stresses at outer fiber of toroidal reducer.
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