Advances in Aircraft Structures

Editor

Jaffar Syed Mohamed Ali

Erwin Sulaema

Published by: **IIUM Press** International Islamic University Malaysia

First Edition, 2011 ©HUM Press, HUM

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise, without any prior written permission of the publisher.

Perpustakaan Negara Malaysia Cataloguing-in-Publication Data

ISBN: 978-967-418-148-2

Member of Majlis Penerbitan Ilmiah Malaysia – MAPIM (Malaysian Scholarly Publishing Council)

Printed by:

HUM PRINTING SDN. BHD.

No. 1, Jalan Industri Batu Caves 1/3 Taman Perindustrian Batu Caves Batu Caves Centre Point 68100 Batu Caves Selangor Darul Ehsan

CONTENTS

	Preface	i
	Contents	ii
	Contributing Author	iv
	Aircraft Structural Design and Testing	
1	Design of HUM Aircraft Fuselage Using Composite Material (5169/20218)	1
2	Fabrication and Testing of HUM Aircraft Fuselage Structure Made of	8
	Composite Laminate Material (5166/20223)	
3	Design and Fabrication of Fuselage Model for Laboratory Purpose (5166/20225	16
4	Simulation of Fuselage Model for Laboratory Purpose (5168/20228)	24
5	Propeller Blade Stress Analysis using CATIA (4625/20230)	30
6	Lateral Crushing of Composite Fuselages (4625/ 20232)	37
7	Corrosion Detection in Aircraft Structures by Ultrasonic Method (49%0/20233)	45
8	Fatigue Damage Characterization of Aluminum Alloy Plates (4980/20235)	55
	Composite Structures (51(4/20231)	
9	Determination of Mechanical Properties of Corrugated Hybrid Composite	63
10	Composite Failure Mechanism of Corrugated Hybrid Composite Subjected to Bending [5168/20239]	70
11	Study of Energy Absorption of Foam-Filled Honeycomb Structure (5/68/2024)	79 (
12	Experimental Study of Indentation on Composite Structure (5162/20245)	86
13	Simulation Study of Composite Structure Subjected to 3 Points Bending	93
	Load (5168/20246)	
14	Experimental Study of the Strength of Sandwich Structure with Honeycomb	101
	Core (5169/20248)	
15	Buckling of Composite Columns (4625/20244)	107
16	Buckling of Composite Perforated Plates (4625/20253)	117
17	Structural Analysis of an Active Beam (4625/20254)	125
18	Characterization of Composite Materials using Full Field Data (6377/2025)	131

19	(6377/20262) Application of Virtual Fields Method to Composite Plate Bending Problem	137
20	Mode I Delamination Simulation using LS-DYNA (3563/20263)	143
	Structural Instability	
21	Buckling of Long Column (4625/20264)	150
22	Buckling of Thin Walled Sections (4625 / 20265)	158
23	Effect of Boundary Conditions on the Buckling Behavior of Perforated	167
24 25 26	Plates (4675/20266) Effect of Cutout Shape on the Critical Buckling Load of Perforated Plates. (4675/20266) Experimental Determination of Critical Buckling Load for a Perforated Plate (2427/20269) Accurate Geometric Stiffness Matrix Formulation of Beam Finite Element	174 182 190
	Structure Analytical Methods	
27	The Constitutive Equation Gap Method (6377/20270)	198
28	The Equilibrium Gap Method (6377/2027)	202
29	The Reciprocity Gap Method (6377/20272)	206
30	The Virtual Fields Method (6377/ 20273)	210
31	Numerical Construction of Piecewise Virtual Fields (6377/26774)	215
32	Numerical Model of Noise Effect in Full Field Data (6377/20274)	221
33	Optimized Virtual Fields with Noise Minimization (6377/20276)	227
34	Axial Stiffness Matrix of Non-Uniform Bernoulli-Euler Bar Elements	233
35	Finite Element Model Updating (6377/20277)	240

Chapter 31

Numerical Construction of Piecewise Virtual Fields

Syed Muhammad Kashif

Abstract

This chapter discusses the numerical issues in construction of piecewise virtual fields over a specimen. The improvement and advantages over the use of single virtual element has been examined. Such a piecewise construction has been successfully used to characterize a thin composite plate in bending. Moreover, the use of piecewise elements has shown its merits in the characterization of a damaged composite plate. An illustrated detailed discussion is presented on the choice of element that ensures continuity at the edges of adjacent elements and its importance.

Keywords: piecewise virtual elements, slope continuity Hermite16 element.

1. Introduction

With the use of virtual fields method, the unknown parameters can be directly identified by making use of special virtual fields or specifically special virtual deflection fields $w^{*\alpha}$ (with $\alpha = a, b, c, d, e, f$) while writing external virtual work as per principle of virtual work (refer to Eq.1).

$$[D_{ij}] = \sum_{i=1}^{n} [F_i \cdot w_i^{*\alpha}] \tag{1}$$