BIOPROCESSING OF RECOMBINANT E. COLI PRODUCING β-GLUCURONIDASE ENZYME
Bioprocessing Of Recombinant

*E. coli* Producing

β-Glucuronidase Enzyme

Edited By

Maizirwan Mel
Hamzah Mohd Salleh
Mohd Azmir Arifin

IIUM Press
Contents

FOREWORD vi
About the Editors ix

CHAPTER

1 Media Optimization for Fermentation of Recombinant Escherichia coli using Response Surface Methodology 1
Maizirwan Mel, Hamzah Mohd Salleh, Mohd Ismail Abdul Karim and Herry Hidayat Janil

2 Improvement of Recombinant E. coli Fermentation Producing β-glucuronidase Enzyme by Taguchi's Design 21
Maizirwan Mel, Hamzah Mohd Salleh, Mohd Ismail Abdul Karim and Mior Haslem Mior Rashidi

3 Batch Fermentation of Recombinant Escherichia coli Producing β-glucuronidase using Different Control Conditions 37
Mohd Ismail Abdul Karim, Hamzah Mohd Salleh and Maizirwan Mel

4 Control Strategy of Fed-Batch Fermentation of E. coli Producing Recombinant β-glucuronidase 49
Maizirwan Mel, Mohd Ismail Abdul Karim, Azini Mat Sa’ud and Hamzah Mohd Salleh

5 The kLa Evaluation of Recombinant Escherichia coli Fermentation Producing β-glucuronidase Enzyme 63
Maizirwan Mel, Mohd Ismail Abdul Karim and Hamzah Mohd Salleh
1. Introduction

The function of fed-batch fermentation mode is to improve productivity when the microorganism is subject to growth limitation by substrate inhibition, the Crabtree effect, or product inhibition (Fordyce et al., 1998). Fed-batch is generally superior to batch processing and is especially beneficial when changing nutrient concentrations affect the productivity and yield of the desired product (Lee et al., 1999).

Since the primary goal of fermentation research is the cost-effective production of bio-products, it is important to develop a cultivation method that allows production of the desired product (Stanbury et al., 2003). A large number of chemical processes, for example, fermentation processes, operate in fed-batch mode to avoid phenomenon such as substrate or product inhibition and to achieve high productivities (Kapadi et al., 2004). Fed-batch processes are commonly used in industrial fermentations, for example, for the production of baker’s yeast, some enzymes, antibiotics, growth hormones, microbial cells, vitamins, amino acids and other organic acids (Stanbury et al., 2003).