

Maizirwan Mel Hamzah Mohd Salleh Mohd Azmir Arifin

BIOPROCESSING OF RECOMBINANT E.COLI PRODUCING β -GLUCURONIDASE ENZYME

IIUM Press INTERNATIONAL ISLAMIC UNIVERSITY MALAYSIA

Bioprocessing Of Recombinant *E. coli* Producing β-Glucuronidase Enzyme

Edited By

Maizirwan Mel Hamzah Mohd Salleh Mohd Azmir Arifin

HUM Press

Published by: IIUM Press International Islamic University Malaysia

First Edition, 2011 © IIUM Press, IIUM

All rights reserved. No part of this publication may be reproduced, stored in a retrival system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording or otherwise, without prior written permission of the publisher.

Perpustakaan Negara Malaysia Cataloguing-in-Publication Data

Bioprocessing Of Recombinant E.Coli Producing β- Glucuronidase Enzyme Maizirwan Mel Include Index

ISBN 978-967-418-010-2

Member of Majlis Penerbitan Ilmiah Malaysia - MAPIM (Malaysian Scholarly Publishing Council)

> Printed by: HUM PRINTING SDN. BHD. No. 1, Jalan Industri Batu Caves 1/3, Taman Perindustrian Batu Caves, Batu Caves Centre Point, 68100 Batu Caves. Selangor Darul Ebsan

Contents

FOREWORD		vi
Ab	About the Editors	
CHAPTER		
1	Media Optimization for Fermentation of Recombinant Escherichia coli using Response Surface Methodology	1
	Maizirwan Mel, Hamzah Mohd Salleh, Mohd Ismail Abdul Karim and Herry Hidayat Jamil	
2	Improvement of Recombinant <i>E. coli</i> Fermentation Producing β -glucuronidase Enzyme by Taguchi's Design	21
	Maizirwan Mel. Hamzah Mohd Salleh. Mohd Ismail Abdul Karim and Mior Haslem Mior Rashidi	
3	Batch Fermentation of Recombinant Escherichia coli Producing β -glucuronidase using Different Control Conditions	37
	Mohd Ismail Abdul Karim. Hamzah Mohd Salleh and Maizirwan Mel	
4	Control Strategy of Fed-Batch Fermentation of E. coli Producing Recombinant β -glucuronidase	49
	Maizirwan Mel, Mohd Ismail Abdul Karim, Azini Mat Sa`ud and Hamzah Mohd Salleh	
5	The kLa Evaluation of Recombinant Escherichia coli Fermentation Producing β -glucuronidase Enzyme	63
	Maizirwan Mel, Mohd Ismail Abdul Karim and Hamzah Mohd Salleh	

Chapter 3

Batch Fermentation of Recombinant *Escherichia coli* producing β-Glucuronidase using Different Control Conditions

Mohd Ismail Abdul Karim, Hamzah Mohd Salleh and Maizirwan Mel

1. Introduction

 β -Glucuronidase, the enzyme responsible for the degradation of various polysaccharides or the cleavage of glucurono-conjugates, is widely distributed in animal, plants, insects and bacteria, with particularly high concentrations in liver found in animals. It catalyzes the hydrolysis of β -Glucuronidase conjugates to yield aglycone and free glucuronic acid.

E. coli is classified as non-photosynthetic and mesophiles bacteria (Wang and Touster, 1972). There are hundreds of different types of *E. coli* recognized by the combination of sugars and proteins displayed on the bacterial surface (Christner et al., 1970). *E. coli* bacteria have long rods without separation when grown under limited conditions.

There are several advantages of using recombinant *E. coli* for protein synthesis. It is one of the most-studied organisms used for recombinant protein synthesis (Himeno et al., 1974) and its genetics