
MECHATRONICS BOOK SERIES

ROBOTICS AND AUTOMATION

Rini Akmeliawati Wahju Sediono Nahrul Khair Alang Md. Rashid

IIUM PRESS

INTERNATIONAL ISLAMIC UNIVERSITY MALAYSIA

MECHATRONICS BOOK SERIES: ROBOTICS AND AUTOMATION

Editors

Rini Akmeliawati Wahju Sediono Nahrul Khair Alang Md. Rashid

Published by: IIUM Press International Islamic University Malaysia

First Edition, 2011 ©HUM Press, HUM

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise, without any prior written permission of the publisher.

Perpustakaan Negara Malaysia

Cataloguing-in-Publication Data

Rini Akmeliawati, Wahju Sediono & Nahrul Khair Alang Md. Rashid: Mechatronics Book Series Robotics and Automation

ISBN: 978-967-418-152-9

Member of Majlis Penerbitan Ilmiah Malaysia – MAPIM (Malaysian Scholarly Publishing Council)

Printed by:

HUM PRINTING SDN.BHD.

No. 1, Jalan Industri Batu Caves 1/3
Taman Perindustrian Batu Caves
Batu Caves Centre Point
68100 Batu Caves
Selangor Darul Ehsan

Tel: +603-6188 1542 / 44 / 45 Fax: +603-6188 1543 EMAIL: iiumprinting@yahoo.com

TABLE OF CONTENTS

Pro	eface	i
Ac	knowledgement	ii
Ed	litor	iii
Tal	ble of Content	\mathbf{v}
1.	Visual Tracking for Human Face A.A. Shafie, Iqbal and M.R. Khan	1
2.	Robot Design: A Case Study of Team Learning Experience Outcome A.A. Shafic	and
3.	Development Neck Support for Humanoid Robot Head A. A. Shafie, M.N. Kasyfi and N. I. Taufik Y	14
4.	Development of Cooperative Mini Robot Amir A. Shafie, Siti E.M.Z and Shazeela A	21
5.	Humanoid Robot Arm Amir A. Shafie and Mohd N. Y.	26
в.	Designing Human Robot Interaction for Emotionally Expre Robotic Hear AMIR-III A. Iqbal, A. A. Shafie, and M. R. Khan	essive 32
7.	An Overview of Fuzzy Based Person Following Robot T. Alamgir, I. J. Alfar and M. M. Rashid	38
8.	Mechanical Design of a Person Following Robot Tarik Bin Alamgir, Ibrahim Jawad Alfar and Muhammad Mahbubur Rashid	43

9,	Development of Fuzzy Based Person Following Robot part 2 Tarik Bin Alamgir, Ibrahim Jawad Alfar and Muhammad Mahbubur Rashid	49
10.	Mobile Robot for Fined Tube Inspection Muhammad Mahbubur Rashid	56
11.	Robot Aided Upper Limb Rehabilitation System: Mechanical Do Shahrul Na'im Sidek, Hidayatullah Mohamed Nawi	esign 64
12.	Robot Aided Upper Limb Rehabilitation System: Electronics Sensors and Actuators Shahrul Na'im Sidek, Khairul Anwar Khalid	for 69
13.	Robot Aided Upper Limb Rehabilitation System: Results Analysis Shahrul Na'im Sidek	and 73
14.	Snake Robot Locomation in Narrow Space: A Review Raisuddin Khan, Mitsuru Watanabe and Masum Billah	79
15.	Multiple Hexapod Robot and Collaborative communication Raisuddin Khan, Masum Billah and Mohiuddin Ahmed	86
16.	. Autonomous Unicycle Robot Using Reaction Wheel Pendu Mechanical Design Atika Adrina Teepol, Nur Fadhilah Mohd Fauzey, Shahrul Na'im S Yasir Mohd Mustafah	94
17.	. Autonomous Unicycle Robot Using Reaction Wheel Pendu Controller Design Nur Fadhilah Mohd Fauzey, Atika Adrina Teepol, Shahrul Na'im S Yasir Mohd Mustafah	103

HISTORICAL BACKGROUND AND EDUCATION

19. Develop an Algorithm for Goal Finding Robot using Reinford Learning	ement 118
M. Kamal, R. Khan, S. Bazuhair and M. Billah	
20. Design and Development of 2 Fingers Robotic Hand Actual Active Grasping Data	ted by 126
MdMozasser Rahman ¹ ,MohdZoolfadli B MdSalleh	
21. Design and Development of Interactive Fish Robot	144
MdMozasser Rahman ¹ ,RizaMuhida and Mohammad Zukhair MohdNazmi	b
22. Design and Development of A Digger Robot	154
MdMozasser Rahman, MohdRuzaini Bin AbdRalim and Othe	rs
23. Glass Wall Cleaning Robot: A Review	170
Md Mozasser Rahman, Ahmed Murgab Mohammed Mahil,	
Norsofiana Bt Umar and Nurul Izzati Bt Samsuddin	
24. Glass Wall Cleaning Robot: -Electrical design and control	177
Md Mozasser Rahman, Ahmed Murgab Mohammed Mahil, Norsofiana Bt Umar and Nurul Izzati Bt Samsuddin	
25. Glass Wall Cleaning Robot: -Electrical design and control M. M. Rahman, M. R. b A. Ralim	187
26. Development of Robotic Manipulator to assist human using Signal Mahbuba Hossain, Raisuddin Khan, and Masum Billah	brain 198
27. Glass Wall Cleaning Robot: Mechanical Design Mahbuba Hossain Raisuddin Khan, and Masum Billah	204

28.	Intelligent SCADA Based Monitoring Scheme for Low Vo Distribution System M. J. E. Salami, A. M. Aibinua, Mohd Shafie Bin Sani and Nurfaizal Bin Wahi	ltage 210
	Truffalzar Bin Walli	
29.	Intelligent SCADA Based Monitoring Scheme for Low Vo Distribution System Abdullateef Ayodele Isqeel and Momoh Jimoh Eyiomika Salar	218
30.	Autonomous Goal Finding Robot M. Kamal, Md. R. Khan, Faisal and M. Billah	227
31.	Intelligent SCADA Based Pipe Monitoring System M. J. E. Salami, A. M. Aibinua, Mohd Shafie Bin Sani Nurfaizal Bin Wahi	236 and
32.	Path Tracking of Car Like Mobile Robot A. A. Isqeela and M. J. E. Salami	250
33.	A New Energy Efficient Building System M. J. E. Salami, Md. R. Khan, O. A. Abdulquadric	255
34.	Automatic Car Parking System M. J. E. Salami, Md. R. Khan and O. A. Abdulquadria	262
35.	Anthropomorphic biped robot A. A. Shafie, M. F. Baharudin	267

CHAPTER 30

Development of an Intelligent Controller for Tropical Food Storage System: A Review

Momoh-Jimoh Eyiomika Salami, Md. Raisuddin Khan, Oluwo Adeyinka Abdulquadri^c

Mechatronics Engineering Department, International Islamic University Malaysia (IIUM) cyinkostics2@yahoo.com

30.1. Introduction

30.1.1 Background

Handling of postharvest products is a very delicate issue most especially as it concerns prolonged storage of the products to make them available outside their seasons. An effective storage process results in availability of the products in acceptable conditions long after harvest. A second advantage is relative stability in the market prices of the products that are stored. Table.1 illustrates the postharvest losses incurred both in developed and developing countries. One can infer from the table that for developing countries a higher percentage of the losses occur between the production sites (farms) and the retail and consumer sites. Traditionally the storage process should commence immediately after harvest save for those items that need to undergo curing processes.

Table 1. Estimated postharvest losses of fresh produce in developed and developing countries.

	Locations	Developed Countries		Developing Countries	
		Range (%)	Mean (%)	Range (%)	Mean (%)
Ī	From production to retail sites	2 - 23	12	5 - 50	22
2	At retail, food service and consumer sites	5 - 30	20	2 – 20	10
3	Cumulative Total	7 - 53	32	7 - 70	32

Source: A. A. kader [1].

Harvested produce emit heat, moisture, carbon dioxide and ethylene gases due to physiological processes taking place within the body of the produce. Under storage, especially in confined spaces these emissions can be detrimental to the produce if not properly evacuated. Thus, a need for proper conditioning of the storage environment arises. The objectives of food storage are sustenance of product quality and reduction in weight loss of the products. Maintaining appropriate storage temperature and humidity levels play a major role in prolonging product shelf life.

A particularly economical method of storage employs air draught upwards through the produce pile thus conveying away the by-products. If conditions are suitable, ambient air is employed to optimize the operational cost. To further improve on the storage process automatic control is employed. The thermodynamic process within the storage environment involves heat and mass exchange between the products and the environment (flowing air). As the air flows through the product pile its heat and moisture receiving capacities drop due to saturation effects. The resulting temperature and moisture gradients set up within the storage volume make the storage process a complex and nonlinear one. In steady state, the temperature and moisture gradients with respect to product height within the storage volume remains relatively constant.

30.1.2 Problems associated with the food storage process

At some point in the flow the heat and moisture receiving capacities of the air drops since it becomes saturated due to the initial contact with products located upstream. This action often