Advances in Mobility Management for IP Networks

Editors:
Aisha Hassan Abdalla Hashim
Othman Khalifa
Shihab A. Hameed

IIUM PRESS
INTERNATIONAL ISLAMIC UNIVERSITY MALAYSIA
Advances in Mobility Management for IP Networks

Editors:
Aisha Hassan Abdalla Hashim
Othman Khalifa
Shihab A. Hameed

IIUM Press
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>No.</th>
<th>Title</th>
<th>Page No.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Acknowledgement</td>
<td>v</td>
</tr>
<tr>
<td></td>
<td>Preface</td>
<td>vi</td>
</tr>
<tr>
<td>1</td>
<td>Part I: Internet Engineering Task Force (IETF) Approaches for Multicast and Mobility Management</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>Introduction to Multicast Mobility Management</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Aisha Hassan Abdalla Hashim, Shihab A. Hameed, Jamal Ibrahim Daoud</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Research Direction in Mobile IPv6</td>
<td>9</td>
</tr>
<tr>
<td></td>
<td>Azana Hafizah Mohd Aman, Aisha Hassan Abdalla Hashim, Sellami Ali, Wajdi Al-Khateeb</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Operation of Context Transfer Protocol</td>
<td>15</td>
</tr>
<tr>
<td></td>
<td>Aisha Hassan Abdalla Hashim, Othman Khalifa, Azana Hafizah Mohd Aman, Farhat Anwar, Shihab A. Hameed</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>The Study of Multicast Hierarchical Mobile IPv6</td>
<td>21</td>
</tr>
<tr>
<td></td>
<td>Azana Hafizah Mohd Aman, Aisha Hassan Abdalla Hashim, Akram M. Zeki</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>The Study Of Multicast Listener Discovery</td>
<td>27</td>
</tr>
<tr>
<td></td>
<td>Aisha Hassan Abdalla Hashim, Imad Fakhri Taha Alshaikhli, Azana Hafizah Mohd Aman, Sellami Ali</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>MIPv6 Based Approaches for Mobility Management</td>
<td>32</td>
</tr>
<tr>
<td></td>
<td>Azana Hafizah Mohd Aman, Aisha Hassan Abdalla Hashim, Imad Fakhri Taha Alshaikhli</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>HMIPv6 Based Approaches for Mobility Management</td>
<td>36</td>
</tr>
<tr>
<td></td>
<td>Aisha Hassan Abdalla Hashim, Wajdi Al-Khateeb, Farhat Anwar, Azana Hafizah Mohd Aman</td>
<td></td>
</tr>
</tbody>
</table>
Part 2: Extensions to Mobile Multicast Schemes

8 Introduction to Mobility Multicast Schemes
Aisha Hassan Abdalla Hashim, Azana Hafizah Mohd Aman, Sellami Ali, Othman Khalifa

9 Qualitative Study of Mobility Management Approaches
Azana Hafizah Mohd Aman, Aisha Hassan Abdalla Hashim, Imad Fakhri Taha Alshaikhli, Farhat Anwar

10 Architecture of M-HMIPv6/CXTP
Aisha Hassan Abdalla Hashim, Azana Hafizah Mohd Aman

11 Intra Domain Movement of M-HMIPv6/CXTP
Azana Hafizah Mohd Aman, Aisha Hassan Abdalla Hashim

12 Inter Domain Movement of M-HMIPv6/CXTP
Azana Hafizah Mohd Aman, Aisha Hassan Abdalla Hashim

13 Message Format of M-HMIPv6/CXTP
Aisha Hassan Abdalla Hashim, Azana Hafizah Mohd Aman

14 Signaling Flow of M-HMIPv6/CXTP
Azana Hafizah Mohd Aman, Aisha Hassan Abdalla Hashim

15 Development of the Service Recovery Time and Signaling Cost Function
Aisha Hassan Abdalla Hashim, Azana Hafizah Mohd Aman

16 Evaluation Methods in Computer Networking
Aisha Hassan Abdalla Hashim, Azana Hafizah Mohd Aman

17 NS2 Simulation Environment in M-HMIPv6
Omer Mahmoud, Azana Hafizah Mohd Aman

18 Service Recovery of Multicast Hierarchical Mobile IPv6 with Context Transfer
Aisha Hassan Abdalla Hashim, Azana Hafizah Mohd Aman

19 The Study of Signaling Cost Of M-HMIPv6 with Context Transfer
Aisha Hassan Abdalla Hashim, Azana Hafizah Mohd Aman

20 Simulation Study of HMIPv6 And M-HMIPv6/CXTP
Azana Hafizah Mohd Aman, Aisha Hassan Abdalla Hashim
21 Packet Loss in M-HMIPv6 with Context Transfer
Azana Hafizah Mohd Aman, Aisha Hassan Abdalla Hashim

22 Evaluation of Handover Latency in M-HMIPv6 with Context Transfer
Azana Hafizah Mohd Aman, Aisha Hassan Abdalla Hashim

23 Future Directions
Azana Hafizah Mohd Aman, Omer Mahmoud, Aisha Hassan Abdalla Hashim

24 MLPv6 Extensions
Abdulrhman Mohammed Bin Mahfodh, Abdi Nasir Ahmed, Aisha Hassan Abdalllahashim, Omer Mahmoud, Md. Rafiquil Islam

25 IP Multicast
Abdulrhman Mohammed Bin Mahfodh, Abdi Nasir Ahmed, Aisha Hassan Abdalllahashim, Md. Rafiquil Islam, Rashid Abdelhaleem Saeed

26 Mobility Approaches to Support IP Multicast
Abdulrhman Mohammed Bin Mahfodh, Abdi Nasir Ahmed, Aisha Hassan Abdalllahashim, Rashid Abdelhaleem Saeed, Omer Mahmoud

27 Hierarchichal Mobile Multicast Context Transfer (HMMCT)
Abdulrhman Mohammed Bin Mahfodh, Abdi Nasir Ahmed, Aisha Hassan Abdalllahashim, Omer Mahmoud, Rashid Abdelhaleem Saeed

28 Simulation Evaluation of HMMCT
Abdulrhman Mohammed Bin Mahfodh, Abdi Nasir Ahmed, Aisha Hassan Abdalllahashim, Omer Mahmoud, Rashid Abdelhaleem Saeed

29 Analytical Study of HMMCT
Abdulrhman Mohammed Bin Mahfodh, Abdi Nasir Ahmed, Aisha Hassan Abdalla Hashim, Faiz Ahmed Mohamed Elfaki, Rashid Saad

Part 3: QoS Approaches

30 Introduction to QoS Approaches in Mobile Ad Hoc Networks
Mohammad Qabajeh, Aisha-Hassan A. Hashim, Othman Khalifa, Liana Qabajeh, Akram M. Zeki
31 Routing Protocols For Ad Hoc Wireless Networks
Mohammad Qabajeh, Aisha-Hassan A. Hashim, Othman Khalifa, Liana Qabajeh, Gharib Subhi Mahmoud Ahmed

32 Quality of Service (QoS) Issues In Manets
Mohammad Qabajeh, Aisha-Hassan A. Hashim, Othman Khalifa, Liana Qabajeh, Jamal Ibrahim Daoud

33 Supporting QoS Multicast Routing Over Mobile Ad Hoc Networks
Mohammad Qabajeh, Aisha-Hassan A. Hashim, Othman Khalifa, Liana Qabajeh

34 Position-Based Routing Protocols For Ad-Hoc Networks
Mohammad Qabajeh, Aisha-Hassan A. Hashim, Othman Khalifa, Liana Qabajeh

35 Simulation in Wireless Networks: An Overview
Mohammad Qabajeh, Aisha-Hassan A. Hashim, Othman Khalifa, Liana Qabajeh, Faiz Ahmed Mohamed Elfaki
POSITION-BASED ROUTING PROTOCOLS FOR AD-HOC NETWORKS

MOHAMMAD QABAJEH1, AISHA-HASSAN A. HASHIM2, OTHMAN KHALIFA2, LIANA QABAJEH4

ECE Dept. Fac. of Eng., International Islamic Univ. Malaysia (IIUM), Jalan Gombak, 53100 Kuala Lumpur, Malaysia.

m_qabajeh@yahoo.com1, aisha@iium.edu.my2, Khalifa@iium.edu.my3, liana_famimi@ppu.edu4

34.1 INTRODUCTION

The function of a routing protocol in mobile Ad-Hoc network is to establish routes between different nodes. Ad-Hoc routing protocols are difficult to design in general. There are two main reasons for that: the highly dynamic nature of these networks due to high mobility of the nodes, and the need to operate efficiently with limited resources such as network bandwidth and limited memory and battery power of the individual nodes in the network. Moreover, routing protocols in Ad-Hoc networks, unlike static networks, do not scale well due to frequently changing network topology, lack of predefined infrastructure like routers, peer-to-peer mode of communication and limited radio communication range [1].

For the aforementioned reasons, many routing protocols which are compatible with the characteristics of Ad-Hoc networks have been proposed. In general, they can be divided into two main categories: topology-based and position-based. Topology-based routing protocols use information about links that exist in the network to perform packet forwarding. In general, topology-based are considered not to scale in networks with more than several hundred nodes [2].

In recent developments, position-based routing protocols exhibit better scalability, performance and robustness against frequent topological changes [1, 2]. Position-based routing protocols use the geographical position of nodes to make routing decisions, which results in improving efficiency and performance. These protocols require that a node be able to obtain its own geographical position and the geographical position of the destination. Generally, this information is obtained via Global Positioning System (GPS) and location services. The routing decision at each node is then based on the destination's position contained in the packet and the position of the forwarding node's neighbors. So the packets are delivered to the nodes in a given geographic region in a natural way. There are different kinds of position-based protocols that are categorized into three main groups: restricted directional flooding, greedy and hierarchical routing protocols[3].