# Advances in Mobility Management for IP Networks

Editors: Aisha Hassan Abdalla Hashim Othman Khalifa Shihab A. Hameed



INTERNATIONAL ISLAMIC UNIVERSITY MALAYSIA

# Advances in Mobility Management for IP Networks

# **Editors:**

Aisha Hassan Abdalla Hashim Othman Khalifa

Shihab A. Hameed



#### Published by:

#### IIUM Press International Islamic University Malaysia

First Edition, 2011 ©IIUM Press, IIUM

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise, without any prior written permission of the publisher.

Perpustakaan Negara Malaysia

Cataloguing-in-Publication Data

Aisha Hassan Abdalla Hashim, Othman Khalifa, Shihab A. Hameed: Advances in Mobility Management for IP Networks

ISBN: 978-967-418-140-6

Member of Majlis Penerbitan Ilmiah Malaysia – MAPIM (Malaysian Scholarly Publishing Council)

Printed by:

HUM PRINTING SDN.BHD.

No. 1, Jalan Industri Batu Caves 1/3
Taman Perindustrian Batu Caves
Batu Caves Centre Point
68100 Batu Caves
Selangor Darul Ehsan

Tel: +603-6188 1542 / 44 / 45 Fax: +603-6188 1543 EMAIL: iiumprinting@yahoo.com

# **TABLE OF CONTENTS**

| No. | Title                                                                                                                                             | Page<br>No. |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------|-------------|
|     | Acknowledgement                                                                                                                                   | V           |
|     | Preface                                                                                                                                           | vi          |
|     | Part 1: Internet Engineering Task Force (IETF) Approaches for<br>Multicast and Mobility Management                                                | 1           |
| 1   | Introduction to Multicast Mobility Management<br>Aisha Hassan Abdalla Hashim, Shihab A. Hameed, Jamal Ibrahim<br>Daoud                            | 2           |
| 2   | Research Direction in Mobile IPv6<br>Azana Hafizah Mohd Aman, Aisha Hassan Abdalla Hashim,<br>Sellami Ali, Wajdi Al-Khateeb                       | 9           |
| 3   | Operation of Context Transfer Protocol<br>Aisha Hassan Abdalla Hashim, Othman Khalifa, Azana Hafizah<br>Mohd Aman, Farhat Anwar, Shihab A. Hameed | 15          |
| 4   | The Study of Multicast Hierarchical Mobile IPv6<br>Azana Hafizah Mohd Aman, Aisha Hassan Abdalla Hashim, Akram<br>M. Zeki                         | 21          |
| 5   | The Study Of Multicast Listener Discovery<br>Aisha Hassan Abdalla Hashim, lmad Fakhri Taha Alshaikhli,<br>Azana Hafizah Mohd Aman, Sellami Ali    | 27          |
| 6   | MIPv6 Based Approaches for Mobility Management<br>Azana Hafizah Mohd Aman, Aisha Hassan Abdalla Hashim, Imad<br>Fakhri Taha Alshaikhli            | 32          |
| 7   | HMIPv6 Based Approaches for Mobility Management<br>Aisha Hassan Abdalla Hashim, Wajdi Al-Khateeb, Farhat Anwar,<br>Azana Hafizah Mohd Aman        | 36          |

# Part 2: Extensions to Mobile Multicast Schemes

| 8  | Introduction to Mobility Multicast Schemes<br>Aisha Hassan Abdalla Hashim, Azana Hafizah Mohd Aman,<br>Sellami Ali, Othman Khalifa                        | 42  |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| 9  | Qualitative Study of Mobility Management Approaches<br>Azana Hafizah Mohd Aman, Aisha Hassan Abdalla Hashim, Imad<br>Fakhri Taha Alshaikhli, Farhat Anwar | 48  |
| 10 | Architecture of M-HMIPv6/CXTP<br>Aisha Hassan Abdalla Hashim, Azana Hafizah Mohd Aman                                                                     | 53  |
| 11 | Intra Domain Movement of M-HMIPv6/CXTP<br>Azana Hafizah Mohd Aman, Aisha Hassan Abdalla Hashim                                                            | 58  |
| 12 | Inter Domain Movement of M-HMIPv6/CXTP<br>Azana Hafizah Mohd Aman, Aisha Hassan Abdalla Hashim                                                            | 64  |
| 13 | Message Format of M-HMIPv6/CXTP<br>Aisha Hassan Abdalla Hashim, Azana Hafizah Mohd Aman                                                                   | 70  |
| 14 | Signaling Flow of M-HMIPv6/CXTP<br>Azana Hafizah Mohd Aman, Aisha Hassan Abdalla Hashim                                                                   | 76  |
| 15 | Development of the Service Recovery Time and Signaling Cost<br>Function<br>Aisha Hassan Abdalla Hashim, Azana Hafizah Mohd Aman                           | 83  |
| 16 | Evaluation Methods in Computer Networking<br>Aisha Hassan Abdalla Hashim, Azana Hafizah Mohd Aman                                                         | 88  |
| 17 | Ns2 Simulation Environment in M-HMIPv6<br>Omer Mahmoud, Azana Hafizah Mohd Aman                                                                           | 93  |
| 18 | Service Recovery of Multicast Hierarchical Mobile IPv6 with<br>Context Transfer<br>Aisha Hassan Abdalla Hashim, Azana Hafizah Mohd Aman                   | 101 |
| 19 | The Study of Signaling Cost Of M-HMIPv6 with Context Transfer Aisha Hassan Abdalla Hashim, Azana Hafizah Mohd Aman                                        | 106 |
| 20 | Simulation Study of HMIPv6 And M-HMIPv6/CXTP  Azana Hafizah Mohd Aman, Aisha Hassan Abdalla Hashim                                                        | 112 |

| 21 | Packet Loss in M-HMIPv6 with Context Transfer Azana Hafizah Mohd Aman, Aisha Hassan Abdalla Hashim                                                                                      | 118 |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| 22 | Evaluation of Handover Latency in M-HMIPv6 with Context<br>Transfer<br>Azana Hafizah Mohd Aman, Aisha Hassan Abdalla Hashim                                                             | 124 |
| 23 | Future Directions<br>Azana Hafizah Mohd Aman, Omer Mahmoud, Aisha Hassan<br>Abdalla Hashim                                                                                              | 128 |
| 24 | MIPv6 Extensions<br>Abdulrhman Mohammed Bin Mahfodh, Abdi Nasir Ahmed, Aisha<br>Hassan AbdalllaHashim, Omer Mahmoud, Md. Rafiqul Islam                                                  | 133 |
| 25 | IP Multicast<br>Abdulrhman Mohammed Bin Mahfodh, Abdi Nasir Ahmed, Aisha<br>Hassan AbdalllaHashim, Md. Rafiqul Islam, Rashid Abdelhaleem<br>Saced                                       | 139 |
| 26 | Mobility Approaches to Support IP Multicast<br>Abdulrhman Mohammed Bin Mahfodh, Abdi Nasir Ahmed, Aisha<br>Hassan AbdalllaHashim, Rashid Abdelhaleem Saeed, Omer<br>Mahmoud             | 144 |
| 27 | Hierarchichal Mobile Multicast Context Transfer (HMMCT)<br>Abdulrhman Mohammed Bin Mahfodh, Abdi Nasir Ahmed, Aisha<br>Hassan AbdalllaHashim, Omer Mahmood, Rashid Abdelhaleem<br>Saeed | 152 |
| 28 | Simulation Evaluation of HMMCT<br>Abdulrhman Mohammed Bin Mahfodh, Abdi Nasir Ahmed, Aisha<br>Hassan AbdalllaHashim, Omer Mahmood, Rashid Abdelhaleem<br>Saeed                          | 157 |
| 29 | Analytical Study of HMMCT<br>Abdulrhman Mohammed Bin Mahfodh, Abdi Nasir Ahmed, Aisha<br>Hassan Abdalla Hashim, Faiz Ahmed Mohamed Elfaki, Rashid Saad                                  | 165 |
|    | Part 3: QoS Approaches                                                                                                                                                                  |     |
| 30 | Introduction to QoS Approaches in Mobile Ad Hoc Networks                                                                                                                                | 171 |
|    | Mohammad Qabajeh, Aisha-Hassan A. Hashim, Othman Khalifa,<br>Liana Qabajeh, Akram M. Zeki                                                                                               |     |

| 31 | Routing Protocols For Ad Hoc Wireless Networks                                                         | 176 |
|----|--------------------------------------------------------------------------------------------------------|-----|
|    | Mohammad Qabajeh, Aisha-Hassan A. Hashim, Othman Khalifa,<br>Liana Qabajeh, Gharib Subhi Mahmoud Ahmed |     |
| 32 | Quality of Service (QoS) Issues In Manets                                                              | 181 |
|    | Mohammad Qabajeh, Aisha-Hassan A. Hashim, Othman Khalifa,<br>Liana Qabajeh, Jamal Ibrahim Daoud        |     |
| 33 | Supporting QoS Multicast Routing Over Mobile Ad Hoc Networks                                           | 186 |
|    | Mohammad Qabajeh, Aisha-Hassan A. Hashim, Othman Khalifa,<br>Liana Qabajeh                             |     |
| 34 | Position-Based Routing Protocols For Ad-Hoc Networks                                                   | 191 |
|    | Mohammad Qabajeh, Aisha-Hassan A. Hashim, Othman Khalifa,<br>Liana Qabajeh                             |     |
| 35 | Simulation in Wireless Networks: An Overview                                                           | 196 |
|    | Mohammad Qabajeh, Aisha-Hassan A. Hashim, Othman Khalifa,<br>Liana Qabajeh , Faiz Ahmed Mohamed Elfaki |     |

## **OPERATION OF CONTEXT TRANSFER PROTOCOL**

### AISHA HASSAN ABDALLA HASHIM<sup>1</sup>, OTHMAN KHALIFA<sup>2</sup>, AZANA HAFIZAH MOHD AMAN, FARHAT ANWAR AND SHIHAB A. HAMEED

ECE Dept, Fac. of Eng., International Islamic Univ. Malaysia (IIUM), Jalan Gombak, 53100 Kuala Lumpur, Malaysia.

aisha@iiu.edu.my¹, khalifa@iium.edu.my²

#### 3.1 INTRODUCTION

The context transfer typically operates between a source node and a target node. A source node is a mobile node's previous access router and the target node is a mobile node's next access router. When context transfer operates, previous access router, next access router and mobile node communicate to each other accordingly. The previous access router transfers the contexts, the next access router requests contexts, and the mobile node sends a message to the routers to transfer contexts.

Context transfers give better performance for node based mobility. The key objectives of context transfer can be summarized as follows [1]:

- To reduce latency and packet losses.
- To avoid the re-initiation of signalling to and from the mobile node or to quickly re-establish context transfer-candidate services without requiring the mobile host to explicitly perform all protocol flows for those services from scratch.
- To provide an interoperable solution that supports various Layer 2 radio access technologies.

#### 3.2 OPERATION

The context transfer is triggered when a handover takes place. This trigger provides the necessary information such as the IP addresses of the access routers, and the authorization to transfer context so that the contexts are recognized. The context transfer initiation messages include parameters needed to identify the source and target nodes, the list of feature contexts, and IP addresses for the contexts identification. The message to request context transfer data also contain an appropriate token to authorize the context transfer [1].

The context transfer operation is based on the time of the context transfer activation. It can be either started by a request from the mobile node or at the initiative of the access router. If the context transfer starts before the handover, and the mobile node is connected to the previous access router it is called predictive. While when context transfer starts after the connection of the mobile node to the next access router it is called reactive. The predictive and reactive operations of context transfer protocol are explained in details in [1].

In predictive handover [1], the trigger is either initiated by the previous access router (PAR) or the mobile node (MN). When it is initiated by the PAR it is called network controlled scenario. The predictive network controlled scenario is shown in Fig. 3.1.