HUMAN BEHAVIOUR RECOGNITION, IDENTIFICATION, AND COMPUTER INTERACTION

Edited by

Othman Omran Khalifa, B.Sc., M.Sc., Ph.D., International Islamic University Malaysia Shihab A. Hameed, B.Sc., M.Sc., Ph.D., International Islamic University Malaysia Sheroz Khan, B.Sc., M.Sc., Ph.D., International Islamic University Malaysia

IIUM PRESS

INTERNATIONAL ISLAMIC UNIVERSITY MALAYSIA

HUMAN BEHAVIOUR RECOGNITION, IDENTIFICATION AND COMPUTER INTERACTION

Edited by

Othman Omran Khalifa, B.Sc., M.Sc., Ph.D., International Islamic University Malaysia

Shihab A. Hameed, B.Sc., M.Sc., Ph.D.,

International Islamic University Malaysia

Sheroz Khan, B.Sc., M.Sc., Ph.D., International Islamic University Malaysia

Published by: IIUM Press International Islamic University Malaysia

First Edition, 2011 ©IIUM Press, IIUM

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise, without any prior written permission of the publisher.

Cataloguing-in-Publication Data

Perpustakaan Negara Malaysia

ISBN: 978-967-418-156-7

Member of Majlis Penerbitan Ilmiah Malaysia – MAPIM (Malaysian Scholarly Publishing Council)

Printed by : IIUM PRINTING SDN. BHD. No. 1, Jalan Industri Batu Caves 1/3 Taman Perindustrian Batu Caves Batu Caves Centre Point 68100 Batu Caves Selangor Darul Ehsan

CONTENTS

	Dart I Human Desture Decognition	Page No.
Chapter 01	Human Posture Recognition: An Overview Othman O. Khalifa, Kyaw Kyaw Htike, Aisha-Hassab Abdalla and Lai Weng Kin	1
Chapter 02	Human Posture Recognition: Literature review Othman O. Khalifa, Kyaw Kyaw Htike, Lai Weng Kin and A. A. Alkhazmi	7
Chapter 03	Theoretical Background of Human Posture Recognition Kyaw Kyaw Htike, Othman O. Khalifa, Sheroz Khan and Lai Weng Kin	15
Chapter 04	Human Posture Recognition Classifiers Kyaw Kyaw Htike, Othman O. Khalifa, Lai Weng Kin and MD Rafiqul Islam	22
Chapter 05	Human Posture Recognition: Methodology and Implementation Kyaw Kyaw Htike, Othman O. Khalifa, and Lai Weng Kin	32
Chapter 06	Human Posture Recognition Database and Preprocessing Simulation Results Kyaw Kyaw Htike, Othman O. Khalifa, Rashid Abdallrahim and Lai Weng Kin	39
Chapter 07	Human Posture Recognition Results using Database A Kyaw Kyaw Htike, Othman O. Khalifa and and Lai Weng Kin	49
Chapter 08	Human Posture recognition Implementation and Deployment Kyaw Kyaw Htike, Othman O. Khalifa and and Lai Weng Kin	58
Chapter 09	Review on Hand Gesture Recognition Sara Bilal and Rini Akmeliawati	68
Chapter 10	Computational Intelligence techniques for Hand Gesture Recognition Sara Bilal and Rini Akmeliawati	77
Chapter 11	Feature Extraction: Hand Shape, Hand Position and Hand Trajectory Path Sara Bilal and Rini Akmeliawati	85
Chapter 12	Towards Malaysian Sign Language Database Haris Al Qodri Maarif, Sara Bilal and Rini Akmeliawati	92
Chapter 13	The Development of Malaysian Sign Language Translator : Preliminary results Sara Bilal, Haris Al Qodri Maarif and Rini Akmeliawati	100
	Part II Human Path Detection for Video Surveillance	

Systems

Chapter 14	Introduction to Intelligent Video Surveillance Systems Othman O. Khalifa, Imran Moez Khan, Yusof Zaw Zaw and Lai Weng Kin	107
Chapter 15	Human Path Detection : A review Imran Moez Khan, Othman O. Khalifa, Yusof Zaw Zaw, Sheroz Khan and Lai	113
	Weng Kin	

Chapter 16	Fuzzy Set Theory Imran Moez Khan, Yusof Zaw Zaw and Othman O. Khalifa	129
Chapter 17	The Mamdani Fuzzy Inference Algorithm Imran Moez Khan, Yusof Zaw Zaw, Othman O. Khalifa and Lai Weng Kin	138
Chapter 18	Human Path Classifier Architecture Imran Moez Khan, Yusof Zaw Zaw, Othman O. Khalifa and Lai Weng Kin	145
Chapter 19	Human Motion Detection and Classification Othman O. Khalifa, Mat Kamil Awang and Aisha-Hassan Abdulla	154
Chapter 20	Real-Time Human Detection for Video Surveillance Fadhlan H. Kamaru Zaman, Amir A. Shafie and Othman O. Khalifa	163
Chapter 21	Human Tracking Algorithm for Video Surveillance Fadhlan H. Kamaru Zaman, Amir A. Shafie and Othman O. Khalifa	178

Part- III Human Identification and Computer Interaction

Chapter 22	Automatic Identity Recognition Systems: A Review Assal A. M. Alqudah,, Roziati Zainuddin, Mohammad A. M. Abushariah,	192
	and Othman O. Khalifa	
Chapter 23	An Application of Biometric Technology: Iris Recognition Othman O Khalifa, Rashidah F. Olanrewaju and Mohd Fariz Ramli	206
Chapter 24	Interactive Voice Response Technology for Telephony System Mohammad A.M. Abu Shariah, R.N. Ainon and Othman O. Khalifa	213
Chapter 25	EMG Signal Classification Techniques For The Development Of Human Computer Interaction System Md. Rezwanul Ahsan, Muhammad Ibn Ibrahimyand Othman Omran Khalifa	224
Chapter 26	English Digits Speech Recognition System Based on Hidden Markov Models Teddy S. Gunawan, Ahmad A. M. Abushariah, Othman O. Khalifa	244
Chapter 27	Signature Recognition Using Artificial Neural Network Ahmad A. M. Abushariah, Teddy S. Gunawan, Othman O. Khalifa, and Jalel Chebil	255
Chapter 28	Speaker Recognition Using Mel Frequency Cepstrum Othman O. Khalifa, S. Khan, MD. Rafidul Islam, M. Faizal and D. Dol	263
Chapter 29	Handwritten Arabic Word/Character Recognition: Common approaches Assma O. H., Othman Khalifa and Aisha Hassan	289
Chapter 30	Speaker's Variabilities, Technology and Language Issues that Affect Automatic Speech and Speaker Recognition Systems Mohammad A. M. Abushariah, Roziati Zaimuddin, Assal A. M. Alqudah, and Othman O.	298
	Khalifa	

Chapter 31	Arabic Automatic Continuous Speech Recognition Systems	306
	Mohammad A. M. Abushariah, Roziati Zainuddin, Assal A. M. Alqudah, and Othman O.	
	Khalifa	
Chapter 32	Face Verification : An Introduction Shihab A. Hameed, Waleed A. Badurik	317
Chapter 33	Introduction to Fingerprint Verification Shihab A. Hameed, Waleed A. Badurik	326
Chapter 34	Protein Coding Identification using Modified Gabor Wavelet Transform on Multicore Systems <i>Teddy Surya Gunawan</i>	334
Chapter 35	Current Trend in Image Guided Surgery (IGS) Abdulfattah A. Aboaba, Shihab A. Hameed, Othman O. Khalifa, Aisha H. Abdalla	344

Chapter 29

Handwritten Arabic Word/Character Recognition: Common approaches

Assma O. H., Othman O. Khalifa and Aisha Hassan Department of Electrical and Computer Engineering, Faculty of Engineering International Islamic University Malaysia, PO BOX 10, Kuala Lumpur, 50728, Malaysia Phone: 03-6196-4488, Fax: 03-6196-4533, E-mail: khalifa@iiu.edu.my

29.1 INTRODUCTION

Offline handwriting word recognition is the automatic transcription by computer, where only the image of the handwriting is available. The recognition operation includes many steps, the segmentation step and the recognition step of offline handwritten Arabic words are suggested to be implemented using different techniques, since off-line Arabic character recognition operations involves many inter-related steps that can't be separated from each other, as a simple genes of operations, the two steps has to be discussed together. What makes Arabic handwriting words recognition so challenging is that unlike Latin, Arabic is written right to left and is always cursive. Letters are joined together along the writing line to form words or sub-words. The Arabic Alphabet has 28 letters, each with two to four shapes. The shape of a letter is determined by its position within the word: Initial, medial, or final, if we included character recognition as well as the word recognition, there would be another shape for each character, which is the isolated character. The researchers in this field have proposed many techniques to solve the problems; such as cursiveness of the Arabic handwritten words, in this paper a review of the used techniques, followed by a comparison to show the pros and cons of each technique are conducted.

29.2 BACKGROUND

HMM and Neural Network are commonly used approaches in the Arabic Handwritten Word Recognition different stages. In this section, a demonstration of the two approaches is conducted. i) Hidden Markov Models (HMM), Hidden Markov models are based on doubly stochastic processes whose underlying random process is not directly observable (i.e. it is hidden). The transition of the system from the current state to the next state is done based on this underlying process. Observable outputs or observations are produced by another stochastic process, which is determined by symbol probabilities. In word recognition problems, there are two main approaches to model the observation sequence (pseudo