HUMAN BEHAVIOUR **RECOGNITION**, **IDENTIFICATION**, **AND COMPUTER** INTERACTION

Edited by

Othman Omran Khalifa, B.Sc. , M.Sc., Ph.D., International Islamic University Malaysia Shihab A. Hameed, B.Sc., M.Sc., Ph.D., International Islamic University Malaysia

Sheroz Khan, B.Sc., M.Sc., Ph.D., International Islamic University Malaysia

IIUM PRESS

INTERNATIONAL ISLAMIC UNIVERSITY MALAYSIA

HUMAN BEHAVIOUR RECOGNITION, IDENTIFICATION AND COMPUTER INTERACTION

Edited by

Othman Omran Khalifa, B.Sc., M.Sc., Ph.D., International Islamic University Malaysia

Shihab A. Hameed, B.Sc., M.Sc., Ph.D.,

International Islamic University Malaysia

Sheroz Khan, B.Sc., M.Sc., Ph.D., International Islamic University Malaysia

Published by: IIUM Press International Islamic University Malaysia

First Edition, 2011 ©IIUM Press, IIUM

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise, without any prior written permission of the publisher.

Cataloguing-in-Publication Data

Perpustakaan Negara Malaysia

ISBN: 978-967-418-156-7

Member of Majlis Penerbitan Ilmiah Malaysia – MAPIM (Malaysian Scholarly Publishing Council)

Printed by : IIUM PRINTING SDN. BHD. No. 1, Jalan Industri Batu Caves 1/3 Taman Perindustrian Batu Caves Batu Caves Centre Point 68100 Batu Caves Selangor Darul Ehsan

CONTENTS

	Part-I Human Posture Recognition	Page No.
Chapter 01	Human Posture Recognition: An Overview Othman O. Khalifa, Kyaw Kyaw Htike, Aisha-Hassab Abdalla and Lai Weng Kin	1
Chapter 02	Human Posture Recognition: Literature review Othman O. Khalifa, Kyaw Kyaw Htike, Lai Weng Kin and A. A. Alkhazmi	7
Chapter 03	Theoretical Background of Human Posture Recognition Kyaw Kyaw Htike, Othman O. Khalifa, Sheroz Khan and Lai Weng Kin	15
Chapter 04	Human Posture Recognition Classifiers Kyaw Kyaw Htike, Othman O. Khalifa, Lai Weng Kin and MD Rafiqul Islam	22
Chapter 05	Human Posture Recognition: Methodology and Implementation Kyaw Kyaw Htike, Othman O. Khalifa, and Lai Weng Kin	32
Chapter 06	Human Posture Recognition Database and Preprocessing Simulation Results Kyaw Kyaw Htike, Othman O. Khalifa, Rashid Abdallrahim and Lai Weng Kin	39
Chapter 07	Human Posture Recognition Results using Database A Kyaw Kyaw Htike, Othman O. Khalifa and and Lai Weng Kin	49
Chapter 08	Human Posture recognition Implementation and Deployment Kyaw Kyaw Htike, Othman O. Khalifa and and Lai Weng Kin	58
Chapter 09	Review on Hand Gesture Recognition Sara Bilal and Rini Akmeliawati	68
Chapter 10	Computational Intelligence techniques for Hand Gesture Recognition Sara Bilal and Rini Akmeliawati	77
Chapter 11	Feature Extraction: Hand Shape, Hand Position and Hand Trajectory Path Sara Bilal and Rini Akmeliawati	85
Chapter 12	Towards Malaysian Sign Language Database Haris Al Qodri Maarif, Sara Bilal and Rini Akmeliawati	92
Chapter 13	The Development of Malaysian Sign Language Translator : Preliminary results Sara Bilal, Haris Al Qodri Maarif and Rini Akmeliawati	100
	Part II Human Path Detection for Video Surveillance	

Systems

Chapter 14	Introduction to Intelligent Video Surveillance Systems Othman O. Khalifa, Imran Moez Khan, Yusof Zaw Zaw and Lai Weng Kin	107
Chapter 15	Human Path Detection : A review Imran Moez Khan, Othman O. Khalifa, Yusof Zaw Zaw, Sheroz Khan and Lai	113
	Weng Kin	

Chapter 16	Fuzzy Set Theory Imran Moez Khan, Yusof Zaw Zaw and Othman O. Khalifa	129
Chapter 17	The Mamdani Fuzzy Inference Algorithm Imran Moez Khan, Yusof Zaw Zaw, Othman O. Khalifa and Lai Weng Kin	138
Chapter 18	Human Path Classifier Architecture Imran Moez Khan, Yusof Zaw Zaw, Othman O. Khalifa and Lai Weng Kin	145
Chapter 19	Human Motion Detection and Classification Othman O. Khalifa, Mat Kamil Awang and Aisha-Hassan Abdulla	154
Chapter 20	Real-Time Human Detection for Video Surveillance Fadhlan H. Kamaru Zaman, Amir A. Shafie and Othman O. Khalifa	163
Chapter 21	Human Tracking Algorithm for Video Surveillance Fadhlan H. Kamaru Zaman, Amir A. Shafie and Othman O. Khalifa	178

Part- III Human Identification and Computer Interaction

Chapter 22	Automatic Identity Recognition Systems: A Review Assal A. M. Alqudah,, Roziati Zainuddin, Mohammad A. M. Abushariah,	192
	and Othman O. Khalifa	
Chapter 23	An Application of Biometric Technology: Iris Recognition Othman O Khalifa, Rashidah F. Olanrewaju and Mohd Fariz Ramli	206
Chapter 24	Interactive Voice Response Technology for Telephony System Mohammad A.M. Abu Shariah, R.N. Ainon and Othman O. Khalifa	213
Chapter 25	EMG Signal Classification Techniques For The Development Of Human Computer Interaction System Md. Rezwanul Ahsan, Muhammad Ibn Ibrahimyand Othman Omran Khalifa	224
Chapter 26	English Digits Speech Recognition System Based on Hidden Markov Models Teddy S. Gunawan, Ahmad A. M. Abushariah, Othman O. Khalifa	244
Chapter 27	Signature Recognition Using Artificial Neural Network Ahmad A. M. Abushariah, Teddy S. Gunawan, Othman O. Khalifa, and Jalel Chebil	255
Chapter 28	Speaker Recognition Using Mel Frequency Cepstrum Othman O. Khalifa, S. Khan, MD. Rafidul Islam, M. Faizal and D. Dol	263
Chapter 29	Handwritten Arabic Word/Character Recognition: Common approaches Assma O. H., Othman Khalifa and Aisha Hassan	289
Chapter 30	Speaker's Variabilities, Technology and Language Issues that Affect Automatic Speech and Speaker Recognition Systems Mohammad A. M. Abushariah, Roziati Zaimuddin, Assal A. M. Alqudah, and Othman O.	298
	Khalifa	

Chapter 31	Arabic Automatic Continuous Speech Recognition Systems	306
	Mohammad A. M. Abushariah, Roziati Zainuddin, Assal A. M. Alqudah, and Othman O.	
	Khalifa	
Chapter 32	Face Verification : An Introduction Shihab A. Hameed, Waleed A. Badurik	317
Chapter 33	Introduction to Fingerprint Verification Shihab A. Hameed, Waleed A. Badurik	326
Chapter 34	Protein Coding Identification using Modified Gabor Wavelet Transform on Multicore Systems <i>Teddy Surya Gunawan</i>	334
Chapter 35	Current Trend in Image Guided Surgery (IGS) Abdulfattah A. Aboaba, Shihab A. Hameed, Othman O. Khalifa, Aisha H. Abdalla	344

Chapter 25 EMG Signal Classification Techniques for The Development Of Human Computer Interaction System

Md. Rezwanul Ahsan, Muhammad Ibn Ibrahimyand Othman Omran Khalifa Electrical and Computer Engineering, Kulliyyah of Engineering International Islamic University Malaysia Kuala Lumpur 53100, Malaysia

25.1. INTRODUCTION

With the rapid development of information technology, the quantity of information sharing by human is increasing accordingly. Since early eighty, numbers of researchers are engaged to develop alternative interfaces for elder and disabled people. More recently, the advancement of technology attracting the researcher attention with respect to extracting user's intention data from neural signals. These types of signals can provide information related to body or limb motion faster than other means. On the basis of central nervous system and peripheral nervous system, various types of techniques have been developed to execute user's intention. The brain signals from central nervous system have the potential for revealing human thoughts. The EEG is a noninvasive monitoring method of recording and analyzing brain activities on the scalp [1]. However, the acquired signals not only represent the massed activities of many cortical neurons but also provide a low spatial resolution and a low signal-to-noise ratio (SNR). Afterwards, there are many technical difficulties need to be solved, and extensive training is usually required for interface methods based on brain activities [2]. At the level of the peripheral nervous system, the signals due to body motion can be detected and acquired by an ENG [3] and an EMG [4]. However, ENG signal based interfaces have limitations with respect to the SNR, dimensions, and drifts. Due to the damage in neural tissue and differential motion of the electrode within the fascicle causes a reduction in the SNR and a gradual drift in the recorded nerve fiber population. On the other side, EMG signal can be measured more conveniently and safely than other bio-signals. EMG signal can be easily generated by voluntary muscle movement and it has better properties of SNR and high amplitude. Hence, an EMG-based HCI is most practical with current technologies.

The idea behind EMG signal controlled HCI is to efficiently convert the amputee's intention in the form of EMG signals into corresponding computer commands. The heart of this conversion is signal classifier. Upon the contraction of muscle, properly positioned surface