HUMAN BEHAVIOUR RECOGNITION, IDENTIFICATION, AND COMPUTER INTERACTION Edited by Othman Omran Khalifa, B.Sc., M.Sc., Ph.D., International Islamic University Malaysia **Shihab A. Hameed,** B.Sc., M.Sc., Ph.D., International Islamic University Malaysia Sheroz Khan, B.Sc., M.Sc., Ph.D., International Islamic University Malaysia **IIUM PRESS** INTERNATIONAL ISLAMIC UNIVERSITY MALAYSIA # HUMAN BEHAVIOUR RECOGNITION, IDENTIFICATION AND COMPUTER INTERACTION # Edited by Othman Omran Khalifa, B.Sc., M.Sc., Ph.D., International Islamic University Malaysia Shihab A. Hameed, B.Sc., M.Sc., Ph.D., International Islamic University Malaysia > **Sheroz Khan,** B.Sc., M.Sc., Ph.D., International Islamic University Malaysia ### Published by: IIUM Press International Islamic University Malaysia First Edition, 2011 ©IIUM Press, IIUM All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise, without any prior written permission of the publisher. Cataloguing-in-Publication Data Perpustakaan Negara Malaysia ISBN: 978-967-418-156-7 Member of Majlis Penerbitan Ilmiah Malaysia – MAPIM (Malaysian Scholarly Publishing Council) Printed by: **IIUM PRINTING SDN. BHD.**No. 1, Jalan Industri Batu Caves 1/3 Taman Perindustrian Batu Caves Batu Caves Centre Point 68100 Batu Caves Selangor Darul Ehsan ### **CONTENTS** | | Dart I Human Dostura Dogognition | Page
No. | |------------|---|-------------| | Chapter 01 | Part-I Human Posture Recognition Human Posture Recognition: An Overview Othman O. Khalifa, Kyaw Kyaw Htike, Aisha-Hassab Abdalla and Lai Weng Kin | 1 | | Chapter 02 | Human Posture Recognition: Literature review Othman O. Khalifa, Kyaw Kyaw Htike, Lai Weng Kin and A. A. Alkhazmi | 7 | | Chapter 03 | Theoretical Background of Human Posture Recognition Kyaw Kyaw Htike, Othman O. Khalifa, Sheroz Khan and Lai Weng Kin | 15 | | Chapter 04 | Human Posture Recognition Classifiers Kyaw Kyaw Htike, Othman O. Khalifa, Lai Weng Kin and MD Rafiqul Islam | 22 | | Chapter 05 | Human Posture Recognition: Methodology and Implementation Kyaw Kyaw Htike, Othman O. Khalifa, and Lai Weng Kin | 32 | | Chapter 06 | Human Posture Recognition Database and Preprocessing Simulation
Results | 39 | | | Kyaw Kyaw Htike, Othman O. Khalifa, Rashid Abdallrahim and Lai Weng Kin | | | Chapter 07 | Human Posture Recognition Results using Database A Kyaw Kyaw Htike, Othman O. Khalifa and and Lai Weng Kin | 49 | | Chapter 08 | Human Posture recognition Implementation and Deployment Kyaw Kyaw Htike, Othman O. Khalifa and and Lai Weng Kin | 58 | | Chapter 09 | Review on Hand Gesture Recognition Sara Bilal and Rini Akmeliawati | 68 | | Chapter 10 | Computational Intelligence techniques for Hand Gesture Recognition Sara Bilal and Rini Akmeliawati | 77 | | Chapter 11 | Feature Extraction: Hand Shape, Hand Position and Hand Trajectory Path Sara Bilal and Rini Akmeliawati | 85 | | Chapter 12 | Towards Malaysian Sign Language Database
Haris Al Qodri Maarif, Sara Bilal and Rini Akmeliawati | 92 | | Chapter 13 | The Development of Malaysian Sign Language Translator: Preliminary results Sara Bilal, Haris Al Qodri Maarif and Rini Akmeliawati | 100 | | | Part II Human Path Detection for Video Surveillance
Systems | | | Chapter 14 | Introduction to Intelligent Video Surveillance Systems Othman O. Khalifa, Imran Moez Khan, Yusof Zaw Zaw and Lai Weng Kin | 107 | | Chapter 15 | Human Path Detection: A review Imran Moez Khan, Othman O. Khalifa, Yusof Zaw Zaw, Sheroz Khan and Lai | 113 | | | Weng Kin | | | Chapter 16 | Fuzzy Set Theory
Imran Moez Khan, Yusof Zaw Zaw and Othman O. Khalifa | 129 | |------------|---|-----| | Chapter 17 | The Mamdani Fuzzy Inference Algorithm Imran Moez Khan, Yusof Zaw Zaw, Othman O. Khalifa and Lai Weng Kin | 138 | | Chapter 18 | Human Path Classifier Architecture
Imran Moez Khan, Yusof Zaw Zaw, Othman O. Khalifa and Lai Weng Kin | 145 | | Chapter 19 | Human Motion Detection and Classification Othman O. Khalifa, Mat Kamil Awang and Aisha-Hassan Abdulla | 154 | | Chapter 20 | Real-Time Human Detection for Video Surveillance Fadhlan H. Kamaru Zaman, Amir A. Shafie and Othman O. Khalifa | 163 | | Chapter 21 | Human Tracking Algorithm for Video Surveillance Fadhlan H. Kamaru Zaman, Amir A. Shafie and Othman O. Khalifa | 178 | | | Part- III Human Identification and Computer Interaction | | | Chapter 22 | Automatic Identity Recognition Systems: A Review Assal A. M. Alqudah,, Roziati Zainuddin, Mohammad A. M. Abushariah, | 192 | | | and Othman O. Khalifa | | | Chapter 23 | An Application of Biometric Technology: Iris Recognition Othman O Khalifa, Rashidah F. Olanrewaju and Mohd Fariz Ramli | 206 | | Chapter 24 | Interactive Voice Response Technology for Telephony System Mohammad A.M. Abu Shariah, R.N. Ainon and Othman O. Khalifa | 213 | | Chapter 25 | EMG Signal Classification Techniques For The Development Of Human Computer Interaction System Md. Rezwanul Ahsan, Muhammad Ibn Ibrahimyand Othman Omran Khalifa | 224 | | Chapter 26 | English Digits Speech Recognition System Based on Hidden Markov
Models
Teddy S. Gunawan, Ahmad A. M. Abushariah, Othman O. Khalifa | 244 | | Chapter 27 | Signature Recognition Using Artificial Neural Network Ahmad A. M. Abushariah, Teddy S. Gunawan, Othman O. Khalifa, and Jalel Chebil | 255 | | Chapter 28 | Speaker Recognition Using Mel Frequency Cepstrum Othman O. Khalifa, S. Khan, MD. Rafidul Islam, M. Faizal and D. Dol | 263 | | Chapter 29 | Handwritten Arabic Word/Character Recognition: Common approaches Assma O. H., Othman Khalifa and Aisha Hassan | 289 | | Chapter 30 | Speaker's Variabilities, Technology and Language Issues that Affect Automatic Speech and Speaker Recognition Systems Mohammad A. M. Abushariah, Roziati Zainuddin, Assal A. M. Alqudah, and Othman O. Khalifa | 298 | | Chapter 31 | Arabic Automatic Continuous Speech Recognition Systems | 306 | |------------|--|-----| | | Mohammad A. M. Abushariah, Roziati Zainuddin, Assal A. M. Alqudah, and Othman O. | | | | Khalifa | | | Chapter 32 | Face Verification: An Introduction Shihab A. Hameed, Waleed A. Badurik | 317 | | Chapter 33 | Introduction to Fingerprint Verification Shihab A. Hameed, Waleed A. Badurik | 326 | | Chapter 34 | Protein Coding Identification using Modified Gabor Wavelet
Transform on Multicore Systems
Teddy Surya Gunawan | 334 | | Chapter 35 | Current Trend in Image Guided Surgery (IGS) Abdulfattah A. Aboaba, Shihab A. Hameed, Othman O. Khalifa, Aisha H. Abdalla | 344 | ### Chapter 10 ## COMPUTATIONAL INTELLIGENCE TECHNIQUES FOR HAND GESTURE RECOGNITION Sara Bilal*, Rini Akmeliawati** Department of Mechatronics Engineering International Islamic University Malaysia (IIUM) JI Gombak 53100, Kuala Lumpur, Malaysia Phone: +60361964412 Fax: +60361964433 *smosb@hotmail.com, ** rakmelia@iium.edu.my ### 10.1. INTRODUCTION Hand gesture is an approach that has gained much attention for real-time Human to Computer Interaction (HCI) applications. In this chapter, we provide a survey on Computational Intelligence Techniques (CIT) for hand gesture recognition for HCI applications in general and Hidden Markov Model (HMM) in particular. Many traditional methods exist in the field of pattern recognition to achieve hand posture and gesture recognition [1, 2] such as artificial intelligence techniques and statistical algorithms. However other types of self developed algorithms also exist, and are often referred to as non-traditional algorithms. For more details on both approaches used for visual human action recognition, readers can refer to the study by Michael et al. in [3]. Artificial Neural Network's (ANN) ability in finding patterns and versatility in training makes it popular learning method in gesture recognition. ANN and its variation such as have been used for SL gesture recognition in any forms as in [4]. Two noticed research work for gesture recognition using ANN where 3D Hopfield NN [5] and Time-Delay NN (TDNN) has been developed by [6]. Recently, ANN has been less used in the field of gesture recognition because of its greater computational burden, susceptibility to training data over-fitting and the huge number database it requires. In the area of modeling and classifying dynamic gestures, HMM-based recognition has been a very popular technique, and mostly used in classification process because they offer dynamic time wrapping, a training algorithm, and a clear Bayesian semantics. Many HMM topologies have been extended from the conventional HMM approach such as Discrete HMM (DHMM), Continuous HMM (CHMM), Partial HMM (PHMM) and Parallel HMM (PaHMM) to handle more problems.