
PRINCIPLES OF TRANSDUCER DEVICES AND COMPONENTS

PRINCIPLES OF TRANSDUCER DEVICES AND COMPONENTS

Edited by

Sheroz Khan, International Islamic University Malaysia

Jalel Chebil, International Islamic University Malaysia

Othman O Khalifa, International Islamic University Malaysia

Published by: IIUM Press International Islamic University Malaysia

First Edition, 2011 ©IIUM Press, IIUM

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise, without any prior written permission of the publisher.

Perpustakaan Negara Malaysia

Cataloguing-in-Publication Data

Sheroz Khan, Jalal Chebil & Othman Khalifa: Principles of Transducer Devices and Components

ISBN: 978-967-418-172-7

Member of Majlis Penerbitan Ilmiah Malaysia – MAPIM (Malaysian Scholarly Publishing Council)

Printed By:

HUM PRINTING SDN.BHD.

No. 1, Jalan Industri Batu Caves 1/3
Taman Perindustrian Batu Caves
Batu Caves Centre Point
68100 Batu Caves
Selangor Darul Ehsan

Tel: +603-6188 1542 / 44 / 45 Fax: +603-6188 1543

EMAIL: iiumprinting@yahoo.com

CONTENTS

Chapter		Page No.
1	RC CIRCUIT RESPONSE Atika Arshad, Rumana Tasnim, Sheroz Khan, AHM Zahirul Alam	1
2	RL CIRCUIT RESPONSE Rumana Tasnim, Atika Arshad, Sheroz Khan, Musse Mohamod	7
3	RLC CIRCUIT RESPONSE Rumana Tasnim, Atika Arshad, Sheroz Khan, Musse Mohamod	13
4	CAPACITIVE SENSING FOR NON-CONTACT MEANS OF MEASUREMENT Rumana Tasnim, Atika Arshad, Sheroz Khan, Musse Mohamod, Nazmus Saquib	19
5	SENSORS IN ELECTRONIC APPLICATIONS Rumana Tasnim, Atika Arshad, Sheroz Khan, Musse Mohamod	27
6	CONTACT TYPE AND NONCONTACT TYPE GAS FLOW MEASURING SENSORS Rumana Tasnim, Atika Arshad, Nazmus Saquib, Sheroz Khan, Musse Mohamod	33
7	OUTPUT CONTROL DEVICES: ACTUATORS Rumana Tasnim, Atika Arshad, Sheroz Khan, Musse Mohamod	39
8	INDUCTIVE POWER SYSTEM FOR ENERGY HARVESTING Atika Arshad, Rumana Tasnim, Sheroz Khan, AHM Zahirul Alam	45
9	ON THE ELECTRODE ARRANGEMENTS OF CAPACITIVE SENSOR FOR TWO PHASE GAS FLOW MEASUREMENT Rumana Tasnim, Atika Arshad, Sheroz Khan, Musse Mohamod	53
10	BASIC CONCEPT OF INDUCTANCE FOR INDUCTIVE TRANSDUCERS Atika Arshad, Rumana Tasnim, Sheroz Khan, AHM Zahirul Alam	59
11	MAGNETIC PROPERTIES FOR MAGNETIC TRANSDUCER Atika Arshad, Rumana Tasnim, Sheroz Khan, AHM Zahirul Alam	65
12	MAGNETIC, HYSTERESIS THEORY: APPLICATION PERSPECTIVE Atika Arshad Rumana Tasnim Sheroz Khan AHM Zahirul Alam	71

13	THE PRINCIPLE OF RESISTIVE SENSING Atika Arshad, Rumana Tasnim, Sheroz Khan, AHM Zahirul Alam	75
14	SPIKES BLOCKING AND SURGE PROTECTION Ahmad Lutfi Torla, Sheroz Khan, Asan Gani	83
15	VOLTAGE SUPPLY AND VOLTAGE REGULATION Ahmad Lutfi Torla, Sheroz Khan, Asan Gani	89
16	FULL-WAVE RECTIFICATION OF A LOW-VOLTAGE SOURCE Ahmad Lutfi Torla, Sheroz Khan, Asan Gani	99
17	DESIGN OF DIFFERENTIAL RESISTIVE MEASURING SYSTEM AND ITS APPLICATIONS Deji Abdulwahab, Sheroz Khan, Jalel Chebil	107
18	LINEARIZING TECHNIQUES FOR SENSOR OUTPUT Mohammad Tahir Siddiqi, Sheroz Khan, Ummer Siddiqi	115
19	SENSOR AND SENSOR RESPONSE-ISSUES AND INTERFACING Syed Masrur Ahmmad, Sheroz Khan, Anis Nurashinkin, Md Rasiuddin Khan	119
20	UWB PULSE GENERATION SHAPING AND ANALYSIS Zeeshan Shahid, Sheroz Khan, AHM Zahirul Alam	133
21	POWER SUPPLY POWER-SUPPLY INTERFERENCE IN SMART SENSORS-TO-MICRONROLLER INTERFACE FOR BIOMEDICAL SIGNALS Mohammad Ashraful, Sheroz Khan, Muhammad Ibrahimy	139
22	RESPONSE AND INACCURACY ISSUES OF SENSORS Mohammad Ashraful, Sheroz Khan, Muhammad Ibrahimy	165
23	PERFORMANCE IMPROVEMENT OF SENSORS RESPONSE USING PIECE-WISE NON-LINEAR (PWL) A/D AND PULSE-WIDTH MODULATION (PWM) A/D TECHNIQUES Ismaila Tijani, Sheroz Khan	175
24	POWER SUPPLY INTERFERENCE IN SMART SENSOR MICROCONTROLLER INTERFACE Ismaila Tijani, Sheroz Khan	185

25	2.45 GHz PASSIVE RFID TAG ANTENNA MOUNTING ON VARIOUS PLATFORMS Abubeker A. Yussuf, Md Rafiqul Islam, Sheroz Khan, Othman O. Khalifa, AHM Zahirul Alam	201
26	ANALYSIS OF HYBRID STEPPER MOTOR PERFORMANCE UNDER THE INFLUENCE OF VOLTAGE SUPPLY INTERFERENCE Abdulazeez F. Salami, Wahab A. Lawal, Sheroz Khan, Teddy Surya Gunawan, Sigit Puspito Wigati Jarot	217
27	PC SOUND CARD BASED INSTRUMENTATION AND CONTROL Teddy Surya Gunawan	229
28	PIECE-WISE LINEAR ANALOG TO DIGITAL (PLADC) CONVERTER PROCESS Abdulazeez F. Salami, Wahab A. Lawal, Sheroz Khan, AHM Zahirul Alam	239
29	DESIGN AND IMPLEMENTATION OF AN OPTIMAL FUZZY LOGIC CONTROLLER USING EGENTIC ALGORITHM Salami Femi Abdulazeez, Lawal Wahab Adetunji, Sheroz Khan, AHM Zahirul Alam, Momoh Jimoh E. Salami, Shihab Ahmed Hameed, Aisha Hasan Abdalla and Mohd Rafiqul Islam	249
30	DESIGN AND HARDWARE IMPLEMENTATION OF CONDITIONING CIRCUIT FOR ACCURATE READING FROM TRANSDUCERS WITH NONLINEAR RESPONSES Khairul Hasan, Aliza Aini Md Ralib, Ma Li Ya, Atika Arshad, Sheroz Khan	265
31	TRANSDUCERS-TO-MICROCNTROLLER INTERFACES-SOFTWARE SOLUTION APPROACH Lawal Wahab Adetunji, Salami Femi Abdulaziz, Sheroz Khan, AHM Zahirul Alam, Mohammad Rafiqul Islam, Shihab A. Hameed and Aisha Hasan Abdalla	277
32	WAVELET ANALYSIS OF THE ECG SIGNALS FOR THREE COMMON HEART DISEASES IN JORDAN Jalel Chebil, Jamal Al Nabulsi	291
33	FUNCTIONAL ELECTRICAL STIMULATION SYSTEM AND PROFILE FOR WALKING	303

34	FUZZY LOGIC BASED TEMPERATURE CONTROL OF THERMOELECTRIC COOLER FOR SINGLE PHOTON	
	AVALANCHE DIODE APPLICATION Nurul Izzati Samsuddin, Salmiah Ahmad, Nurul Fadzlin Hasbullah	311
35	SPECTRUM SENSING FOR COGNITIVE RADIOS Izyan Munyanti Abu Hanifah, Siti Natrah Che Rus, Sigit Puspito Wigati Jarot	317
36	COGNITIVE RADIO VS INTELLIGENT ANTENNA Siti Rabani Mat Nawi, Nurul Farhah Toha, Khaizuran Abdullah, M. Rafiqul Islam, Sheroz Khan	327
37	APPLICATION AND CASE STUDIES OF MAGNETIC INDUCTION Atika Arshad, Rumana Tasnim, Sheroz Khan, A H M Zahirul Alam	341

Chapter 10

BASIC CONCEPT OF INDUCTANCE FOR INDUCTIVE TRANSDUCERS

ATIKA ARSHAD, RUMANA TASNIM, SHEROZ KHAN, AHM ZAHIRUL ALAM

10.0 INTRODUCTION

Inductance is a property exhibited by a circuit element, called inductor. This property is a result of a changing magnetic field associated with a coil of given number of turns wounded on air core or core of some materials. Accordingly inductance depends on the geometrical dimensions, and the turns and the core used. Invariably the most important cause for a magnetic field is the current flowing through the turns. If current is varying with time, the magnetic field is varying with time. A time-varying magnetic field includes a voltage in any conductor linked by the field, and as a result the coil causes a drop in the voltage applied. The circuit parameter of inductance displays a dormant behavior for a continuous current flow. The coil breaks its non-dormant behavior open when the current flow experiences a change.

10.1 INDUCTORS

An inductor is a passive circuit component that stores (does not consume) electrical energy in the form of magnetic field [1]. In the beginning of flow of current (even direct current), an inductor shows up to be highly resistive, and once magnetized, the inductor becomes like a conductor. Inductance of an inductor, L can be defined as the minus emf induced in a coil divided by the rate of the current in that coil as represented in Eq. (10.1). Unit is in henrys (H), and it is graphically represented as a coiled wire wounded around a non-conductive core.

$$L = -\frac{emf_{induced\ in\ a\ coil}}{\frac{di}{dt}} \tag{10.1}$$

10.2 STORED ENERGY IN INDUCTOR

Generally speaking, inductor is a device which temporary stores energy in the form of magnetic field (as in Figure 10.1). Inductors are usually coils of wire, and one of the basic properties of electromagnetism is that when current flows through a wire, it creates a small