CURRENT RESEARCH AND DEVELOPMENTS IN BIOTECHNOLOGY ENGINEERING AT IIUM

(VOLUME IV)

Editors:
Ma’an Alkhathib
Abdullah Al Mamun
Faridah Yusof

Department of Biotechnology Engineering
Faculty of Engineering
International Islamic University Malaysia

IIUM Press
CONTENTS

PREFACE viii

CHAPTER 1 REMOVAL OF ZINC FROM WASTEWATER BY CARBON NANOTUBES 1
Nassereldeen A. Kabbashi, Ahmad Fadzil Ahmad Shuhaili, Md Z. Alam

CHAPTER 2 REMOVAL CHARACTERISTICS OF MANGANESE (Mn2+) BY CNTS 8
Nassereldeen A. Kabbashi, Suleyman A.M, Mohamed E.S. Mirghani, Farhana I.Y

CHAPTER 3 REMOVAL TECHNIQUES OF CADMIUM FROM WASTEWATER BY CNTS 15
Nassereldeen A. Kabbashi, Muhammad Fikri Bin Rosly, Suleyman Muyibi

CHAPTER 4 KINETICS OF ACTIVATED CARBON FROM EFB IN MERCURY REMOVAL 21
Nassereldeen A. Kabbashi, Ma’an F. Alkhatib, Mohammed Elwathig and Ili Nadirah Bi Jamil

CHAPTER 5 CARBON NANOFIBERS TO REMOVE ARSENIC 26
Abdullah Al Mamun, Ma’an Alkhatib, Zahirah Abd. Kadir

CHAPTER 6 CARBON NANOTUBES TO REMOVE CHROMIUM 32
Abdullah Al Mamun, Ma’an Alkhatib, Aishah Jamaluddin Ahmad

CHAPTER 7 CARBON NANOTUBES TO REMOVE NICKEL 38
Abdullah Al Mamun, Ma’an Alkhatib, Siti Melor Asnida Zainudin

CHAPTER 8 ADSORPTION IOTHERM OF CARBON NANOTUBES IN REMOVING HEAVY METALS 44
Abdullah Al Mamun, Faridah Yusof, Norsyafini Ishak

CHAPTER 9 CARBON NANOFIBERS TO REMOVE NICKEL 50
Abdullah Al Mamun, Ma’an Alkhatib, Haleema Shajahan

CHAPTER 10 ADSORPTION OF LEAD BY CNTS GROWN ON GAC 54
Abdullah Al Mamun, Ma’an Alkhatib, Iman Hawari

CHAPTER 11 ADSORPTION OF CADMIUM BY CNTS GROWN ON GACS 59
Abdullah Al Mamun, Ma’an Alkhatib, Nada Hamid Al Samawi

CHAPTER 12 PERFORMANCE OF CNTS COLUMN IN REMOVING LEAD FROM WATER 63
Abdullah Al Mamun, Md Zahangir Alam, Muhammad Akram Abdul Hadi

CHAPTER 13 STABILITY OF DISPERSION OF (SW-CNT)-CARBOXY-METHYL CELLULOSE (CMC) IN AQUEOUS SOLUTION 68
Ahmad T. Jameel, Mohammed S. Jami and Syarifah R. Kamaruzaman

CHAPTER 14 OPTIMUM COLLOIDAL DISPERSION OF CARBON NANOTUBE IN ETHYLENE GLYCOL USING TRITON X-100 AS DISPERSING AGENT 74
Ahmad T. Jameel, Faridah Yusof, Natrah Ibrahim and Alade A. Olanrewaju

CHAPTER 15 CHARACTERIZATION OF IMMOBILIZED LIPASE ON MULTI-WALLED CARBON NANOTUBE 80
Nur Hidayah Zainan, Maan Fahmi Al-Khatib and Hanzah Mohd. Salleh

CHAPTER 16 PURIFICATION OF SKIM LATEX PROTEIN USING CARBON NANOTUBES AS THE CHROMATOGRAPHIC MEDIA 86
Faridah Yusof and Peer Mohamed
CHAPTER 17  COMPUTATIONAL STUDIES OF ADSORPTION GLYCINE  
Ibrahim Ali Noorbatcha, Hamzah Mohd Salleh and Nursafwaa Abu Talib  

CHAPTER 18  KINETIC STUDIES ON ENHANCED MERCURY ADSORPTION USING ACTIVATED CARBON  
Nassereldineen Kabbashi, Noor Illi  

CHAPTER 19  ANALYSIS OF CROSS FLOW ULTRAFILTRATION MEMBRANE  
Mohammed Saedi Jami, Tariq Jameel and Norasila Binti Ali Mahmud  

CHAPTER 20  APPLICATION OF CARBON NANOTUBES IMPREGNATED ON ACTIVATED CARBON FOR CADMIUM REMOVAL FROM AQUEOUS SOLUTION  
Ma'an Alkhathib, Abdillah Al-Mamun, Nurhazwani Muhamad Nor  

CHAPTER 21  BIOPROCESSING OF MORINGA OLEIFERA FOR REMOVAL OF HEAVY METALS (CADMIUM AND CHROMIUM)  
Suleyman Aremu Mayibi, Jamal Parveen, Wan Mohd Syraif Wan Sulaiman  

CHAPTER 22  COAGULATION PERFORMANCE OF BIOACTIVE CONSTITUENTS ISOLATED FROM MORINGA OLEIFERA SEED IN LOW TURBIDITY WATER TREATMENT  
Suleyman A. Mayibi, Eman N. Ali, Mohamad Ramly Mohamad Salleh, Hamzah Mohd Salleh and Md Zahangir Alam  

CHAPTER 23  DESIGN AND PRODUCTION OF CARBON NANOTUBE-BASED BIOSENSOR  
Ma'an Alkhathib, Mohamad Faizal Bin Khamis, Waleed Fekry Faris  

CHAPTER 24  DESIGN OF AN ADSORPTION SYSTEM FOR THE REMOVAL OF PHENOL FROM WATER USING ACTIVATED CARBON  
Ma'an Alkhathib, Ahmad Tariq Jameel, Mohammad N. A. Alherbawi  

CHAPTER 25  FEASIBILITY STUDY ON THE PRODUCTION OF BIODIESEL FROM MICROALGAE  
Ma'an Alkhathib, Md. Zahangir Alam, Salma A. S. Binsilm  

CHAPTER 26  IDENTIFICATION OF SUITABLE RESIN TO BE MIXED WITH COMMERCIALLY AVAILABLE CASSAVA STARCH FOR RIGID PACKAGING APPLICATION  
Ma'an Alkhathib, Noorhaza Bt Alias  

CHAPTER 27  IMMOBILIZATION OF LIPASE ON MULTI-WALLED CARBON NANOTUBES  
Ma'an Alkhathib, Hamzah Mohd Salleh, Anas M. N. Sultan  

CHAPTER 28  INTEGRATION OF ARTIFICIAL NEURAL NETWORK AND PRINCIPAL COMPONENT ANALYSIS TECHNIQUES FOR WASTEWATER TREATMENT PLANT EVALUATION  
Mohammed Saedi Jami, Nassereldineen A. Kabbashi and Mustapha Mujeli  

CHAPTER 29  ISOLATION OF BACTERIA FROM OIL-CONTAMINATED SOIL FOR CRUDE OIL DEGRADATION  
Ma'an Alkhathib, Husnaiah Bt Dr Hj Muhammad Nur Lubis, Alade Abass Olanrewaju  

CHAPTER 30  ISOLATION OF BACTERIA FROM SOIL FOR PLASTICS DEGRADATION  
Ma'an Alkhathib, Nur Amalina Binti Ahmad, Alade Abass Olanrewaju
CHAPTER 31  OPTIMIZATION OF CELLULASE ENZYME PRODUCTION USING ARTIFICIAL NEURAL NETWORK
Mohammed Saedi Jami, Md. Zahangir Alam and Lamija Subasic 190

CHAPTER 32  POTENTIAL OF ARTIFICIAL NEURAL NETWORKS IN THE PREDICTION OF WASTEWATER TREATMENT PLANT PERFORMANCE
Mohammed Saedi Jami, Nassereeldeen Ahmed Kabashi and Norhafiza Binti Abdullah 196

CHAPTER 33  PRODUCTION OF ACTIVATED CARBON FROM OIL PALM EMPTY FRUIT BUNCH FOR ADSORPTION OF CADMIUM IN AQUEOUS SOLUTION
Suleyman A. Mayibi, Ma’an Alkhatib, Jeminat Onotayo Amode 202

CHAPTER 34  PRODUCTION OF ACTIVATED CARBON FROM PALM OIL EMPTY FRUIT BUNCH BY CHEMICAL ACTIVATION
Ma’an Alkhatib, Monawar Munjod 209

CHAPTER 35  REMOVAL OF AQUEOUS ZINC (II) USING PROCESSED MORINGA OLEIFERA SEEDS
Suleyman A. Mayibi, Isam Y. Qudsieh, M. H. A. Rahman 217

CHAPTER 36  REMOVAL OF COLOUR FROM PALM OIL MILL EFFLUENT USING GRANULAR ACTIVATED CARBON (GAC)
Ma’an Alkhatib, Abdullah Al Mamun, Iqrah Akbar 224

CHAPTER 37  THERMAL PROPERTIES ENHANCEMENT FOR THE DEVELOPED OF ETHYLENE VINYL ACETATE/EPOXIDIZED NATURAL RUBBER/CARBON NANOTUBES NANOCOMPOSITES
Faridah Yusof and Norazlina Mohamed Yatim 232

CHAPTER 38  EFFECT OF CARBON NANOTUBES LOADING ON THE MECHANICAL PROPERTIES OF ETHYLENE VINYL ACETATE/EPOXIDIZED NATURAL RUBBER NANOCOMPOSITES
Faridah Yusof and Norazlina Mohamed Yatim 242

INDEX 251
CHAPTER 28

INTEGRATION OF ARTIFICIAL NEURAL NETWORK AND PRINCIPAL COMPONENT ANALYSIS TECHNIQUES FOR WASTEWATER TREATMENT PLANT EVALUATION

Mohammed Saedi Jami, Nasser Elddeen A. Kabbashi and Mustapha Mujeli

Department of Biotechnology Engineering, Faculty of Engineering, International Islamic University Malaysia, Gombak, 50728 Kuala Lumpur, Malaysia.

ABSTRACT

Artificial Neural Network (ANN) as a black box model has the benefit of integrating the various operation conditions of wastewater treatment plant system and modeled it for proper simulation. The model might be improved if the raw data are preprocessed using principal component analysis (PCA) technique prior to imputing into neural net. The paper explores the theory of ANN using feed forward back-propagation algorithm and developed a simulation environment for the prediction of WWTP performance using data acquired from Bandar Tun Razak Sewage treatment plant (STP) Kuala Lumpur. The study found out that effluent Biological Oxygen Demand (BOD\text{eff}) prediction by the model is satisfactory for process evaluation. A correlation coefficient (R) and mean square error (MSE) for BOD\text{eff} was found to be 0.7990 (1.43) and 0.8276 (1.76) for training and testing data samples, respectively.

Keywords: wastewater treatment plant, artificial neural network, principal component analysis, biological oxygen demand.

INTRODUCTION

The art of wastewater remedial is called wastewater treatment and it is carried out in a specific location termed as Wastewater Treatment Plant (WWTP). Wastewater comprises pathogens, toxics, organic and inorganic materials that pose a serious nuisance to the public and the environment. Pathogenic microorganisms (coliform, streptococci, salmonella, and enteric virus) transmit various diseases, so public concern regarding untreated wastewater is eminent. Therefore, any material present in water and has altered either or both the physical and/or chemical composition of water above the permitted level is termed as water pollutants. Removing pollutants that incorporated in the wastewater is the major goal of any WWTP in the world. The domestic and industrial wastewater contains pollutants such as Biochemical Oxygen Demand (BOD), Chemical Oxygen Demand (COD), Suspended Solids (SS), Ammonical Nitrogen (NH\text{3}-N), Phosphorus, heavy metals and pathogens etc. To maintain the permissible level of wastewater parameters outlined by law enforcement bodies often become very challenging, due to the complexity nature of the wastewater parameters and their interactions. Influenes characteristics of WWTP vary from one plant to another, which usually depends on the life style of the people around the plant, variation on diurnal