CURRENT RESEARCH AND DEVELOPMENT IN BIOTECHNOLOGY ENGINEERING AT IIUM **VOLUME IV** **Editors:** Ma'an Alkhatib Abdullah Al Mamun Faridah Yusof **IIUM PRESS** INTERNATIONAL ISLAMIC UNIVERSITY MALAYSIA ## CURRENT RESEARCH AND DEVELOPMENTS IN BIOTECHNOLOGY ENGINEERING AT IIUM (VOLUME IV) Editors: Ma'an Alkhatib Abdullah Al Mamun Faridah Yusof Department of Biotechnology Engineering Faculty of Engineering International Islamic University Malaysia ### Published by: IIUM Press International Islamic University Malaysia First Edition, 2011 ©IIUM Press, IIUM All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise, without any prior written permission of the publisher. Perpustakaan Negara Malaysia Cataloguing-in-Publication Data Ma'an Alkhatib, Abdullah Al Mamun & Faridah Yusof: Current Reasearch and Development in Biotechnology Engineering at IIUM Volume IV ISBN: 978-967-418-136-9 Member of Majlis Penerbitan Ilmiah Malaysia – MAPIM (Malaysian Scholarly Publishing Council) Printed by : IIUM PRINTING SDN. BHD. No. 1, Jalan Industri Batu Caves 1/3 Taman Perindustrian Batu Caves Batu Caves Centre Point 68100 Batu Caves Selangor Darul Ehsan ### **CONTENTS** | | PREFACE | viii | |------------|---|------| | CHAPTER 1 | REMOVAL OF ZINC FROM WASTEWATER BY CARBON NANOTUBES | 1 | | | Nassereldeen A. Kabbashi, Ahmad Fadzil Ahmad Shuhaili, Md Z. Alam | | | CHAPTER 2 | REMOVAL CHARACTERISTICS OF MANGANESE (MN2+) BY CNTS | 8 | | | Nassereldeen A. Kabbashi, Suleyman A.M, Mohamed E.S. Mirghani, Farhana I.Y | | | CHAPTER 3 | REMOVAL TECHNIQUES OF CADMIUM FROM WASTEWATER BY CNTS | 15 | | | Nassereldeen A. Kabbashi, Muhammad Fikri Bin Rosly, Suleyman Muyibi | | | CHAPTER 4 | KINETICS OF ACTIVATED CARBON FROM EFB IN MERCURY REMOVAL | 21 | | | Nassereldeen. A. Kabbashi, Ma'an F. Alkhatib, Mohammed Elwathig and Ili
Nadirah Bt Jamil | | | CHAPTER 5 | CARBON NANOFIBERS TO REMOVE ARSENIC | 26 | | | Abdullah Al Mamun, Ma'an Alkhatib, Zahirah Abd. Kadir | | | CHAPTER 6 | CARBON NANOTUBES TO REMOVE CHROMIUM | 32 | | | Abdullah Al Mamun, Ma'an Alkhatib, Aishah Jamaluddin Ahmad | | | CHAPTER 7 | CARBON NANOTUBES TO REMOVE NICKEL | 38 | | | Abdullah Al Mamun, Ma'an Alkhatib, Siti Melor Asnida Zainudin | | | CHAPTER 8 | ADSORPTION ISOTHERM OF CARBON NANOTUBES IN REMOVING HEAVY METALS | 44 | | | Abdullah Al Mamun, Faridah Yusof, Norsyafini Ishak | | | CHAPTER 9 | CARBON NANOFIBERS TO REMOVE NICKEL | 50 | | | Abdullah Al Mamun, Ma'an Alkhatib, Halema Shajahan | | | CHAPTER 10 | ADSORPTION OF LEAD BY CNTS GROWN ON GAC | 54 | | | Abdullah Al Mamun, Ma'an Alkhatib, Iman Hawari | | | CHAPTER 11 | ADSORPTION OF CADMIUM BY CNTS GROWN ON GACS | 59 | | | Abdullah Al Mamun, Ma'an Alkhatib, Nada Hamid Al Samawi | | | CHAPTER 12 | PERFORMANCE OF CNTS COLUMN IN REMOVING LEAD FROM WATER | 63 | | | Abdullah Al Mamun, Md Zahangir Alam, Muhammad Akram Abdul Hadi | | | CHAPTER 13 | STABILITY OF DISPERSION OF (SW-CNT)-CARBOXY-METHYL CELLULOSE (CMC) IN AQUEOUS SOLUTION | 68 | | | Ahmad T. Jameel, Mohammed S. Jami and Syarifah R. Kamaruzaman | | | CHAPTER 14 | OPTIMUM COLLOIDAL DISPERSION OF CARBON NANOTUBE IN ETHYLENE GLYCOL USING TRITON X-100 AS DISPERSING AGENT | 74 | | | Ahmad T. Jameel, Faridah Yusof, Natrah Ibrahim and Alade A. Olanrewaju | | | CHAPTER 15 | CHARACTERIZATION OF IMMOBILIZED LIPASE ON MULTI-WALLED CARBON NANOTUBE | 80 | | | Nur Hidayah Zainan, Maan Fahmi Al-Khatib and Hamzah Mohd. Salleh | | | CHAPTER 16 | PURIFICATION OF SKIM LATEX PROTEIN USING CARBON NANOTUBES AS THE CHROMATOGRAPHIC MEDIA | 86 | | | Faridah Yusof and Peer Mohamed | | | CHAPTER 17 | COMPUTATIONAL STUDIES OF ADSORPTION GLYCINE | 92 | |------------|--|-----| | | Ibrahim Ali Noorbatcha, Hamzah Mohd Salleh and Nursafuraa Abu Talib | | | CHAPTER 18 | KINETIC STUDIES ON ENHANCED MERCURY ADSORPTION USING ACTIVATED CARBON | 97 | | | Nassereldeen Kabbashi, Noor Illi | | | CHAPTER 19 | ANALYSIS OF CROSS FLOW ULTRAFILTRATION MEMBRANE | 103 | | | Mohammed Saedi Jami, Tariq Jameel and Norasila Binti Ali Mahmud | | | CHAPTER 20 | APPLICATION OF CARBON NANOTUBES IMPREGNATED ON ACTIVATED CARBON FOR CADMIUM REMOVAL FROM AQUEOUS SOLUTION | 109 | | | Ma'an Alkhatib, Abdullah Al-Mamun,Nurhazwani Muhamad Nor | | | CHAPTER 21 | BIOPROCESSING OF MORINGA OLEIFERA FOR REMOVAL OF HEAVY METALS (CADMIUM AND CHROMIUM) | 117 | | | Suleyman Aremu Muyibi, Jamal Parveen, Wan Mohd Syraif Wan Sulaiman | | | CHAPTER 22 | COAGULATION PERFORMANCE OF BIOACTIVE CONSTITUENTS ISOLATED FROM MORINGA OLEIFERA SEED IN LOW TURBIDITY WATER TREATMENT | 123 | | | Suleyman A. Muyibi, Eman N. Ali , Mohamad Ramlan Mohamed Salleh, Hamzah
Mohd Salleh and Md Zahangir Alam | | | CHAPTER 23 | DESIGN AND PRODUCTION OF CARBON NANOTUBE-BASED BIOSENSOR | 130 | | | Ma'an Alkhatib, Mohamad Faizal Bin Khamis, Waleed Fekry Faris | | | CHAPTER 24 | DESIGN OF AN ADSORPTION SYSTEM FOR THE REMOVAL OF PHENOL FROM WATER USING ACTIVATED CARBON | 138 | | | Ma'an Alkhatib, Ahmad Tariq Jameel, Mohammad N. A. Alherbawi | | | CHAPTER 25 | FEASIBILITY STUDY ON THE PRODUCTION OF BIODIESEL FROM MICROALGAE | 148 | | | Ma'an Alkhatib, Md. Zahangir Alam, Salma A. S. Binsilm | | | CHAPTER 26 | IDENTIFICATION OF SUITABLE RESIN TO BE MIXED WITH COMMERCIALLY AVAILABLE CASSAVA STARCH FOR RIGID PACKAGING APPLICATION | 155 | | | Ma'an Alkhatib, Noorhaza Bt Alias | | | CHAPTER 27 | IMMOBILIZATION OF LIPASE ON MULTI-WALLED CARBON
NANOTUBES
Ma`an Alkhatib, Hamzah Mohd Salleh, Anas M. N. Sultan | 162 | | CHAPTER 28 | INTEGRATION OF ARTIFICIAL NEURAL NETWORK AND PRINCIPAL COMPONENT ANALYSIS TECHNIQUES FOR WASTEWATER TREATMENT PLANT EVALUATION | 169 | | | Mohammed Saedi Jami, Nassereldeen A. Kabbashi and Mustapha Mujeli | | | CHAPTER 29 | ISOLATION OF BACTERIA FROM OIL-CONTAMINATED SOIL FOR CRUDE OIL DEGRADATION | 175 | | | Ma'an Alkhatib, Humaidah Bt Dr Hj Muhammad Nur Lubis, Alade Abass
Olanrewaju | | | CHAPTER 30 | ISOLATION OF BACTERIA FROM SOIL FOR PLASTICS DEGRADATION | 183 | | | Ma'an Alkhatib. Nur Amalina Binti Ahmad. Alade Abass Olanrewaiu | | | CHAPTER 31 | OPTIMIZATION OF CELLULASE ENZYME PRODUCTION USING ARTIFICIAL NEURAL NETWORK | 190 | |------------|--|-----| | | Mohammed Saedi Jami, Md. Zahangir Alam and Lamija Subasic | | | CHAPTER 32 | POTENTIAL OF ARTIFICIAL NEURAL NETWORKS IN THE PREDICTION OF WASTEWATER TREATMENT PLANT PERFORMANCE | 196 | | | Mohammed Saedi Jami, Nassereldeen Ahmed Kabashi and Norhafiza Binti
Abdullah | | | CHAPTER 33 | PRODUCTION OF ACTIVATED CARBON FROM OIL PALM EMPTY FRUIT BUNCH FOR ADSORPTION OF CADMIUM IN AQUEOUS SOLUTION | 202 | | | Suleyman A. Muyibi, Ma'an Alkhatib, Jeminat Omotayo Amode | | | CHAPTER 34 | PRODUCTION OF ACTIVATED CARBON FROM PALM OIL EMPTY FRUIT BUNCH BY CHEMICAL ACTIVATION | 209 | | | Ma'an Alkhatib, Monawar Munjid | | | CHAPTER 35 | REMOVAL OF AQUEOUS ZINC (II) USING PROCESSED MORINGA OLEIFERA SEEDS | 217 | | | Suleyman A. Muyibi, Isam Y. Qudsieh, M. H. A. Rahman | | | CHAPTER 36 | REMOVAL OF COLOUR FROM PALM OIL MILL EFFLUENT USING GRANULAR ACTIVATED CARBON (GAC) | 224 | | | Ma'an Alkhatib, Abdullah Al Mamun, Iqrah Akbar | | | CHAPTER 37 | THERMAL PROPERTIES ENHANCEMENT FOR THE DEVELOPED OF ETHYLENE VINYL ACETATE/EPOXIDIZED NATURAL RUBBER/CARBON NANOTUBES NANOCOMPOSITES | 232 | | | Faridah Yusof and Norazlina Mohamed Yatim | | | CHAPTER 38 | EFFECT OF CARBON NANOTUBES LOADING ON THE MECHANICAL PROPERTIES OF ETHYLENE VINYL ACETATE/EPOXIDIZED NATURAL RUBBER NANOCOMPOSITES | 242 | | | Faridah Yusof and Norazlina Mohamed Yatim | | | | INDEX | 251 | ### **CHAPTER 20** ## APPLICATION OF CARBON NANOTUBES IMPREGNATED ON ACTIVATED CARBON FOR CADMIUM REMOVAL FROM AQUEOUS SOLUTION Ma'an Alkhatib, Abdullah Al-Mamun, Nurhazwani Muhamad Nor Department of Biotechnology Engineering, Faculty of Engineering, International Islamic University Malaysia, Gombak, 50728 Kuala Lumpur, Malaysia. ### **ABSTRACT** In this study, the ability of the Carbon Nanotubes impregnated on Activated Carbons to remove cadmium from aqueous solution was evaluated. The adsorption of cadmium onto the impregnated Activated Carbons was evaluated by varying cadmium concentration (0.2, 0.6, 1 mg/L), adsorbent dosage (10, 30, 50 mg), pH (4, 6, 8) and contact time (40, 60, 80 minutes). Optimization of the process parameter was conducted by Central Composite Design (CCD). Batch mode adsorption study has shown that the removal of cadmium was maximum at pH 6, when the initial cadmium concentration is 0.6 mg/L within 60 minutes using 30 mg of the adsorbents. The percentage removal resulted from this condition was 99.7%. **Keywords**: carbon nanotubes, adsorption, cadmium, ### INTRODUCTION The quality of water is determined by its physical, chemical and biological characteristics. It is important to know the water quality before it can be consumed safely not only for the humans but also for the health of ecosystems. Nowadays, as a result of development in industrialization, various kinds of pollutants have been released into the environment. The accumulation of the pollutants in the environment has contributed to the pollution. According to Omar (2003), one of the most important environmental problems in the world is water pollution. As a result, drinking water, including bottled water may contain at least small amount of some contaminants. The maximum allowed cadmium for raw drinking water is 0.003 mg/L (National Guidelines for Raw Drinking Water, 2000). Moreover, industrialization and technological development processes have led to the introduction of hazardous chemicals into the environment; this has increased the level of dangerous chemicals such as environmental pollutants (heavy metals), agrochemicals (herbicides, pesticides, halogenated polycyclic hydrocarbons), sewage, and allied contaminants. The presence of these heavy metals in the environment is a major concern due to their toxicity to life forms. Unlike organic pollutants, the majority of which are susceptible to biological degradation, heavy metals brought about harmful end products. Therefore, the elimination of heavy metals from water and waste water is important to protect public health. Thus, treatment of aqueous wastes containing soluble heavy metals requires concentration of the metals into a smaller volume followed by recovery for secure disposal (Teker et al., 1999).