CURRENT RESEARCH AND DEVELOPMENTS IN BIOTECHNOLOGY ENGINEERING AT IIUM

(VOLUME IV)

Editors:
Ma’an Alkhatib
Abdullah Al Mamun
Faridah Yusof

Department of Biotechnology Engineering
Faculty of Engineering
International Islamic University Malaysia

IIUM Press
CONTENTS

PREFACE viii

CHAPTER 1 REMOVAL OF ZINC FROM WASTEWATER BY CARBON NANOTUBES 1
Nassereldeen A. Kabbashi, Ahmad Fadzil Ahmad Shuhaili, Md Z. Alam

CHAPTER 2 REMOVAL CHARACTERISTICS OF MANGANESE (MN2+) BY CNCTS 8
Nassereldeen A. Kabbashi, Suleyman A.M, Mohamed E.S. Mirghani, Farhana I.Y

CHAPTER 3 REMOVAL TECHNIQUES OF CADMIUM FROM WASTEWATER BY CNCTS 15
Nassereldeen A. Kabbashi, Muhammed Fikri Bin Rosly, Suleyman Muyibi

CHAPTER 4 KINETICS OF ACTIVATED CARBON FROM EFB IN MERCURY REMOVAL 21
Nassereldeen A. Kabbashi, Ma’an F. Alkhatib, Mohammed Elwathig and Ili Nadirah Bi Jamil

CHAPTER 5 CARBON NANOFIBERS TO REMOVE ARSENIC 26
Abdullah Al Mamun, Ma’an Alkhatib, Zahirah Abd. Kadir

CHAPTER 6 CARBON NANOTUBES TO REMOVE CHROMIUM 32
Abdullah Al Mamun, Ma’an Alkhatib, Aishah Jamaluddin Ahmad

CHAPTER 7 CARBON NANOTUBES TO REMOVE NICKEL 38
Abdullah Al Mamun, Ma’an Alkhatib, Siti Melor Asnida Zainuddin

CHAPTER 8 ADSORPTION ISOTHERM OF CARBON NANOTUBES IN REMOVING HEAVY METALS 44
Abdullah Al Mamun, Faridah Yusof, Norsyafini Ishak

CHAPTER 9 CARBON NANOFIBERS TO REMOVE NICKEL 50
Abdullah Al Mamun, Ma’an Alkhatib, Haleme Shajahan

CHAPTER 10 ADSORPTION OF LEAD BY CNCTS GROWN ON GAC 54
Abdullah Al Mamun, Ma’an Alkhatib, Iman Hawari

CHAPTER 11 ADSORPTION OF CADMIUM BY CNCTS GROWN ON GACS 59
Abdullah Al Mamun, Ma’an Alkhatib, Nada Hamid Al Samawi

CHAPTER 12 PERFORMANCE OF CNCTS COLUMN IN REMOVING LEAD FROM WATER 63
Abdullah Al Mamun, Md Zahangir Alam, Muhammad Akram Abdul Hadi

CHAPTER 13 STABILITY OF DISPERSION OF (SW-CNT)-CARBOXY-METHYL CELLULOSE (CMC) IN AQUEOUS SOLUTION 68
Ahmad T. Jameel, Mohammed S. Jami and Syarifah R. Kamaruzaman

CHAPTER 14 OPTIMUM COLLOIDAL DISPERSION OF CARBON NANOTUBE IN ETHYLENE GLYCOL USING TRITON X-100 AS DISPERSING AGENT 74
Ahmad T. Jameel, Faridah Yusof, Natrah Ibrahim and Alade A. Olanrewaju

CHAPTER 15 CHARACTERIZATION OF IMMOBILIZED LIPASE ON MULTI-WALLED CARBON NANOTUBE 80
Nur Hidayah Zainan, Maan Fahmi Al-Khatib and Hanzah Mohd. Salleh

CHAPTER 16 PURIFICATION OF SKIM LATEX PROTEIN USING CARBON NANOTUBES AS THE CHROMATOGRAPHIC MEDIA 86
Faridah Yusof and Peer Mohamed
CHAPTER 17 COMPUTATIONAL STUDIES OF ADSORPTION GLYCINE
Ibrahim Ali Noorbacha, Hamzah Mohd Salleh and Nursafwua Abu Talib

CHAPTER 18 KINETIC STUDIES ON ENHANCED MERCURY ADSORPTION USING
ACTIVATED CARBON
Nassereldeen Kabbashi, Noor Illi

CHAPTER 19 ANALYSIS OF CROSS FLOW ULTRAFILTRATION MEMBRANE
Mohammed Saedi Jami, Tariq Jameel and Norasila Binti Ali Mahmud

CHAPTER 20 APPLICATION OF CARBON NANOTUBES IMPREGNATED ON
ACTIVATED CARBON FOR CADMIUM REMOVAL FROM AQUEOUS
SOLUTION
Ma'an Alkhatib, Abdillah Al-Mamun, Nurhazwani Muhamad Nor

CHAPTER 21 BIOPROCESSING OF MORINGA OLEIFERA FOR REMOVAL OF HEAVY
METALS (CADMIUM AND CHROMIUM)
Suleyman Aremu Muyibi, Jamal Parveen, Wan Mohd Syraif Wan Sulaiman

CHAPTER 22 COAGULATION PERFORMANCE OF BIOACTIVE CONSTITUENTS
ISOLATED FROM MORINGA OLEIFERA SEED IN LOW TURBIDITY
WATER TREATMENT
Suleyman A. Muyibi, Eman N. Ali, Mohamad Ramlan Mohamed Salleh, Hamzah Mohd Salleh and Md Zahangir Alam

CHAPTER 23 DESIGN AND PRODUCTION OF CARBON NANOTUBE-BASED
BIOSENSOR
Ma'an Alkhatib, Mohamad Faizal Bin Khamis, Waleed Fekry Faris

CHAPTER 24 DESIGN OF AN ADSORPTION SYSTEM FOR THE REMOVAL OF
PHENOL FROM WATER USING ACTIVATED CARBON
Ma'an Alkhatib, Ahmad Tariq Jameel, Mohammad N. A. Alherbawi

CHAPTER 25 FEASIBILITY STUDY ON THE PRODUCTION OF BIODIESEL FROM
MICROALGAE
Ma'an Alkhatib, Md. Zahangir Alam, Salma A. S. Binsilm

CHAPTER 26 IDENTIFICATION OF SUITABLE RESIN TO BE MIXED WITH
COMMERCIALLLY AVAILABLE CASSAVA STARCH FOR RIGID
PACKAGING APPLICATION
Ma'an Alkhatib, Noorhaiza Bt Alias

CHAPTER 27 IMMOBILIZATION OF LIPASE ON MULTI-WALLED CARBON
NANOTUBES
Ma'an Alkhatib, Hamzah Mohd Salleh, Anas M. N. Sultan

CHAPTER 28 INTEGRATION OF ARTIFICIAL NEURAL NETWORK AND PRINCIPAL
COMPONENT ANALYSIS TECHNIQUES FOR WASTEWATER
TREATMENT PLANT EVALUATION
Mohammed Saedi Jami, Nassereldeen A. Kabbashi and Mustapha Mujeli

CHAPTER 29 ISOLATION OF BACTERIA FROM OIL-CONTAMINATED SOIL FOR
CRUDE OIL DEGRADATION
Ma'an Alkhatib, Humaidah Bt Dr Hj Muhammad Nur Lubis, Alade Abass Olanrewaju

CHAPTER 30 ISOLATION OF BACTERIA FROM SOIL FOR PLASTICS DEGRADATION
Ma'an Alkhatib, Nur Amalina Binti Ahmad, Alade Abass Olanrewaju
CHAPTER 31 OPTIMIZATION OF CELLULASE ENZYME PRODUCTION USING ARTIFICIAL NEURAL NETWORK
Mohammed Saedi Jami, Md. Zahangir Alam and Lamija Subasic

CHAPTER 32 POTENTIAL OF ARTIFICIAL NEURAL NETWORKS IN THE PREDICTION OF WASTEWATER TREATMENT PLANT PERFORMANCE
Mohammed Saedi Jami, Nassereeldeen Ahmed Kabashi and Norhafiza Binti Abdullah

CHAPTER 33 PRODUCTION OF ACTIVATED CARBON FROM OIL PALM EMPTY FRUIT BUNCH FOR ADSORPTION OF CADMIUM IN AQUEOUS SOLUTION
Suleyman A. Muyibi, Ma’an Alkhatab, Jeminat Omotayo Amode

CHAPTER 34 PRODUCTION OF ACTIVATED CARBON FROM PALM OIL EMPTY FRUIT BUNCH BY CHEMICAL ACTIVATION
Ma’an Alkhatab, Monawar Munjid

CHAPTER 35 REMOVAL OF AQUEOUS ZINC (II) USING PROCESSED MORINGA OLEIFERA SEEDS
Suleyman A. Muyibi, Isam Y. Qudsieh, M. H. A. Rahman

CHAPTER 36 REMOVAL OF COLOUR FROM PALM OIL MILL EFFLUENT USING GRANULAR ACTIVATED CARBON (GAC)
Ma’an Alkhatab, Abdullah Al Mamun, Iqrah Akbar

CHAPTER 37 THERMAL PROPERTIES ENHANCEMENT FOR THE DEVELOPED ETHYLENE VINYL ACETATE/EPOXIDIZED NATURAL RUBBER/CARBON NANOTUBES NANOCOMPOSITES
Faridah Yusof and Norazlina Mohamed Yatim

CHAPTER 38 EFFECT OF CARBON NANOTUBES LOADING ON THE MECHANICAL PROPERTIES OF ETHYLENE VINYL ACETATE/EPOXIDIZED NATURAL RUBBER NANOCOMPOSITES
Faridah Yusof and Norazlina Mohamed Yatim

INDEX
CHAPTER 20

APPLICATION OF CARBON NANOTUBES IMPREGNATED ON ACTIVATED CARBON FOR CADMIUM REMOVAL FROM AQUEOUS SOLUTION

Ma’an Alkhatib, Abdullah Al-Mamun, Nurhazwani Muhamad Nor

Department of Biotechnology Engineering, Faculty of Engineering, International Islamic University Malaysia, Gombak, 50728 Kuala Lumpur, Malaysia.

ABSTRACT

In this study, the ability of the Carbon Nanotubes impregnated on Activated Carbons to remove cadmium from aqueous solution was evaluated. The adsorption of cadmium onto the impregnated Activated Carbons was evaluated by varying cadmium concentration (0.2, 0.6, 1 mg/L), adsorbent dosage (10, 30, 50 mg), pH (4, 6, 8) and contact time (40, 60, 80 minutes). Optimization of the process parameter was conducted by Central Composite Design (CCD). Batch mode adsorption study has shown that the removal of cadmium was maximum at pH 6, when the initial cadmium concentration is 0.6 mg/L within 60 minutes using 30 mg of the adsorbents. The percentage removal resulted from this condition was 99.7%.

Keywords: carbon nanotubes, adsorption, cadmium,

INTRODUCTION

The quality of water is determined by its physical, chemical and biological characteristics. It is important to know the water quality before it can be consumed safely not only for the humans but also for the health of ecosystems. Nowadays, as a result of development in industrialization, various kinds of pollutants have been released into the environment. The accumulation of the pollutants in the environment has contributed to the pollution.

According to Omar (2003), one of the most important environmental problems in the world is water pollution. As a result, drinking water, including bottled water may contain at least small amount of some contaminants. The maximum allowed cadmium for raw drinking water is 0.003 mg/L (National Guidelines for Raw Drinking Water, 2000). Moreover, industrialization and technological development processes have led to the introduction of hazardous chemicals into the environment; this has increased the level of dangerous chemicals such as environmental pollutants (heavy metals), agrochemicals (herbicides, pesticides, halogenated polycyclic hydrocarbons), sewage, and allied contaminants.

The presence of these heavy metals in the environment is a major concern due to their toxicity to life forms. Unlike organic pollutants, the majority of which are susceptible to biological degradation, heavy metals brought about harmful end products. Therefore, the elimination of heavy metals from water and waste water is important to protect public health. Thus, treatment of aqueous wastes containing soluble heavy metals requires concentration of the metals into a smaller volume followed by recovery for secure disposal (Tekker et al., 1999).