CONTENTS

PREFACE viii

CHAPTER 1 REMOVAL OF ZINC FROM WASTEWATER BY CARBON NANOTUBES 1
Nassereldeen A. Kabbashi, Ahmad Fadzil Ahmad Shu haili, Md Z. Alam

CHAPTER 2 REMOVAL CHARACTERISTICS OF MANGANESE (MN2+) BY CNTS 8
Nassereldeen A. Kabbashi, Suleyman A.M, Mohamed E.S. Mirghani, Farhana I.Y

CHAPTER 3 REMOVAL TECHNIQUES OF CADMIUM FROM WASTEWATER BY CNTS 15
Nassereldeen A. Kabbashi, Muhammad Fikri Bin Rosly, Suleyman Muyibi

CHAPTER 4 KINETICS OF ACTIVATED CARBON FROM EFB IN MERCURY REMOVAL 21
Nassereldeen A. Kabbashi, Ma’an F. Alkhatib, Mohammed Elwathig and Ilif Nadirah Bi Jamil

CHAPTER 5 CARBON NANOFIBERS TO REMOVE ARSENIC 26
Abdullah Al Mamun, Ma’an Alkhatib, Zahirah Abd. Kadir

CHAPTER 6 CARBON NANOTUBES TO REMOVE CHROMIUM 32
Abdullah Al Mamun, Ma’an Alkhatib, Aishah Jamaluddin Ahmad

CHAPTER 7 CARBON NANOTUBES TO REMOVE NICKEL 38
Abdullah Al Mamun, Ma’an Alkhatib, Siti Melor Asnida Zainudin

CHAPTER 8 ADSORPTION ISOTHERM OF CARBON NANOTUBES IN REMOVING HEAVY METALS 44
Abdullah Al Mamun, Faridah Yusof, Norsyafini Ishaq

CHAPTER 9 CARBON NANOFIBERS TO REMOVE NICKEL 50
Abdullah Al Mamun, Ma’an Alkhatib, Hatema Shajahan

CHAPTER 10 ADSORPTION OF LEAD BY CNTS GROWN ON GAC 54
Abdullah Al Mamun, Ma’an Alkhatib, Iman Hawari

CHAPTER 11 ADSORPTION OF CADMIUM BY CNTS GROWN ON GACS 59
Abdullah Al Mamun, Ma’an Alkhatib, Nada Hamid Al Samawi

CHAPTER 12 PERFORMANCE OF CNTS COLUMN IN REMOVING LEAD FROM WATER 63
Abdullah Al Mamun, Md Zahangir Alam, Muhammad Akram Abdul Hadi

CHAPTER 13 STABILITY OF DISPERSION OF (SW-CNT)-CARBOXY-METHYL CELLULOSE (CMC) IN AQUEOUS SOLUTION 68
Ahmad T. Jameel, Mohammed S. Jami and Syarifah R. Kamaruzaman

CHAPTER 14 OPTIMUM COLLOIDAL DISPERSION OF CARBON NANOTUBE IN ETHYLENE GLYCOL USING TRITON X-100 AS DISPERSING AGENT 74
Ahmad T. Jameel, Faridah Yusof, Natrah Ibrahim and Alade A. Olanrewaju

CHAPTER 15 CHARACTERIZATION OF IMMOBILIZED LIPASE ON MULTI-WALLED CARBON NANOTUBE 80
Nur Hidayah Zainan, Maan Fahmi Al-Khatib and Hanzah Mohd. Salleh

CHAPTER 16 PURIFICATION OF SKIM LATEX PROTEIN USING CARBON NANOTUBES AS THE CHROMATOGRAPHIC MEDIA 86
Faridah Yusof and Peer Mohamed
CHAPTER 17 COMPUTATIONAL STUDIES OF ADSORPTION GLYCINE
Ibrahim Ali Noorbatcha, Hamzah Mohd Salleh and Nursafuwa Abu Talib

CHAPTER 18 KINETIC STUDIES ON ENHANCED MERCURY ADSORPTION USING ACTIVATED CARBON
Nassereldeen Kabbashi, Noor Illi

CHAPTER 19 ANALYSIS OF CROSS FLOW ULTRAFILTRATION MEMBRANE
Mohammed Saedi Jami, Tariq Jameel and Norasila Binti Ali Mahmud

CHAPTER 20 APPLICATION OF CARBON NANOTUBES IMPREGNATED ON ACTIVATED CARBON FOR CADMIUM REMOVAL FROM AQUEOUS SOLUTION
Ma’an Alkhathib, Abdillah Al-Mamun, Nurhazwani Muhamad Nor

CHAPTER 21 BIOPROCESSING OF MORINGA OLEIFERA FOR REMOVAL OF HEAVY METALS (CADMIUM AND CHROMIUM)
Suleyman Aremu Muyibi, Jamal Parveen, Wan Mohd Syrif Wan Sulaiman

CHAPTER 22 COAGULATION PERFORMANCE OF BIOACTIVE CONSTITUENTS ISOLATED FROM MORINGA OLEIFERA SEED IN LOW TURBIDITY WATER TREATMENT

CHAPTER 23 DESIGN AND PRODUCTION OF CARBON NANOTUBE-BASED BIOSENSOR
Ma’an Alkhathib, Mohamad Faizal Bin Khamis, Waleed Fekry Faris

CHAPTER 24 DESIGN OF AN ADSORPTION SYSTEM FOR THE REMOVAL OF PHENOL FROM WATER USING ACTIVATED CARBON
Ma’an Alkhathib, Ahmad Tariq Jameel, Mohammad N. A. Alhembawi

CHAPTER 25 FEASIBILITY STUDY ON THE PRODUCTION OF BIODIESEL FROM MICROALGAE
Ma’an Alkhathib, Md. Zahirul Alam, Salma A. S. Binsilm

CHAPTER 26 IDENTIFICATION OF SUITABLE RESIN TO BE MIXED WITH COMMERCIALY AVAILABLE CASSAVA STARCH FOR RIGID PACKAGING APPLICATION
Ma’an Alkhathib, Noorhaza Bt Alias

CHAPTER 27 IMMOBILIZATION OF LIPASE ON MULTI-WALLED CARBON NANOTUBES
Ma’an Alkhathib, Hamzah Mohd Salleh, Anas M. N. Sultan

CHAPTER 28 INTEGRATION OF ARTIFICIAL NEURAL NETWORK AND PRINCIPAL COMPONENT ANALYSIS TECHNIQUES FOR WASTEWATER TREATMENT PLANT EVALUATION
Mohamed Saedi Jami, Nassereldeen A. Kabbashi and Mustapha Mujeli

CHAPTER 29 ISOLATION OF BACTERIA FROM OIL-CONTAMINATED SOIL FOR CRUDE OIL DEGRADATION
Ma’an Alkhathib, Humaiedah Bt Dr Hj Muhammad Nur Lubis, Alade Abass Olanrewaju

CHAPTER 30 ISOLATION OF BACTERIA FROM SOIL FOR PLASTICS DEGRADATION
Ma’an Alkhathib, Nur Amalina Binti Ahmad, Alade Abass Olanrewaju
CHAPTER 31 OPTIMIZATION OF CELLULASE ENZYME PRODUCTION USING ARTIFICIAL NEURAL NETWORK
Mohammed Saedi Jami, Md. Zahangir Alam and Lamija Subasic

CHAPTER 32 POTENTIAL OF ARTIFICIAL NEURAL NETWORKS IN THE PREDICTION OF WASTEWATER TREATMENT PLANT PERFORMANCE
Mohammed Saedi Jami, Nassereedeen Ahmed Kabashi and Norhafiza Binti Abdullah

CHAPTER 33 PRODUCTION OF ACTIVATED CARBON FROM OIL PALM EMPTY FRUIT BUNCH FOR ADSORPTION OF CADMIUM IN AQUEOUS SOLUTION
Suleyman A. Muyibi, Ma’an Alkhatib, Jeminat Omotayo Amode

CHAPTER 34 PRODUCTION OF ACTIVATED CARBON FROM PALM OIL EMPTY FRUIT BUNCH BY CHEMICAL ACTIVATION
Ma’an Alkhatib, Monawar Munjid

CHAPTER 35 REMOVAL OF AQUEOUS ZINC (II) USING PROCESSED MORINGA OLEIFERA SEEDS
Suleyman A. Muyibi, Isam Y. Qudsieh, M. H. A. Rahman

CHAPTER 36 REMOVAL OF COLOUR FROM PALM OIL MILL EFFLUENT USING GRANULAR ACTIVATED CARBON (GAC)
Ma’an Alkhatib, Abdullah Al Mamun, Iqrah Akbar

CHAPTER 37 THERMAL PROPERTIES ENHANCEMENT FOR THE DEVELOPED OF ETHYLENE VINYL ACETATE/EPOXIDIZED NATURAL RUBBER/CARBON NANOTUBES NANOCOMPOSITES
Faridah Yusof and Norazlina Mohamed Yatim

CHAPTER 38 EFFECT OF CARBON NANOTUBES LOADING ON THE MECHANICAL PROPERTIES OF ETHYLENE VINYL ACETATE/EPOXIDIZED NATURAL RUBBER NANOCOMPOSITES
Faridah Yusof and Norazlina Mohamed Yatim

INDEX
CHAPTER 15

CHARACTERIZATION OF IMMOBILIZED LIPASE ON MULTI-WALLED CARBON NANOTUBE

Nur Hidayah Zainan, Ma’an Fahmi Al-Khatib and Hamzah Mohd. Salleh

Department of Biotechnology Engineering, Faculty of Engineering, International Islamic University Malaysia, Gombak, 50728 Kuala Lumpur, Malaysia.

ABSTRACT

Lipase from Aspergillus niger was immobilized to multi-walled carbon nanotubes (MWNTs) by using N-(3-Dimethylaminopropyl)-N'-ethyl-carbodiimide that acts as a coupling reagent. Prior to this step, MWNTs were functionalized with carboxyl group by a sonication method. The immobilized lipase was characterized in terms of its activity with respect to temperature, pH, substrate concentration and stability over time. Immobilize lipase has lower activity compare to free lipase. Their characteristic also differs particularly in term of their activity and stability where the optimal temperature for immobilize lipase is 40°C while free lipase is 37°C. However, the optimal pH for both situation is the same, which is pH 7 and immobilized lipase is more stable compare to free lipase with respect to time. The Michaelis constant (K_M) value differs slightly for both situation.

Keywords: lipase, immobilization, carbon nanotubes, activity, enzyme

INTRODUCTION

Nowadays, enzymes are widely applied in different industries and the numbers of its application continue to increase due to its advantages. Examples of enzyme use in industry include food and beverages industry, animal feed, textiles, pulp and paper, detergents, cosmetic, wastewater treatment, pharmaceutical, etc. Therefore, enzymes have shown their importance in both bio-industry and human routine life (Hasan et al., 2006).

There are, however, factors that pose challenges for the applications of enzymes as biocatalyst in industries. For example, despite the vast potential applications of enzymes in industries, many enzymes may not come cheap and have limited operational stability and shelf-storage life, as well as may not be suitable for applications under the extreme conditions of industrial processes: enzymes could be easily denaturated when the environmental factors such as temperature, pH, salt concentration and other physical or chemical system were changed. Denatured enzymes will lose their catalytic activities temporarily or permanently due to structure changing or bonding pattern distribution. In addition, it is also difficult to recover and reuse the enzyme.

Lipases are widely used in the processing of fats and oils, detergents and degreasing formulations, food processing, the synthesis of fine chemicals and pharmaceuticals, paper manufacture, and production of cosmetics, and pharmaceuticals. Lipase can be used to