CURRENT RESEARCH AND DEVELOPMENTS IN BIOTECHNOLOGY ENGINEERING AT IIUM

(VOLUME IV)

Editors:
Ma’an Alkhatib
Abdullah Al Mamun
Faridah Yusof

Department of Biotechnology Engineering
Faculty of Engineering
International Islamic University Malaysia

IIUM Press
CONTENTS

PREFACE viii

CHAPTER 1 REMOVAL OF ZINC FROM WASTEWATER BY CARBON NANOTUBES 1
Nassereldeen A. Kabbashi, Ahmad Fadzil Ahmad Shuhaili, Md Z. Alam

CHAPTER 2 REMOVAL CHARACTERISTICS OF MANGANESE (MN2+) BY CNTS 8
Nassereldeen A. Kabbashi, Suleyman A.M, Mohamed E.S. Mirghani, Farhana I.Y

CHAPTER 3 REMOVAL TECHNIQUES OF CADMIUM FROM WASTEWATER BY CNTS 15
Nassereldeen A. Kabbashi, Muhammed Fikri Bin Rosly, Suleyman Muyibi

CHAPTER 4 KINETICS OF ACTIVATED CARBON FROM EFB IN MERCURY REMOVAL 21
Nassereldeen A. Kabbashi, Ma’an F. Alkhatib, Mohammed Elwathiq and Ili Nadiraah Bi Jamil

CHAPTER 5 CARBON NANOFIBERS TO REMOVE ARSENIC 26
Abdullah Al Mamun, Ma’an Alkhatib, Zahira Abd. Kadir

CHAPTER 6 CARBON NANOTUBES TO REMOVE CHROMIUM 32
Abdullah Al Mamun, Ma’an Alkhatib, Aishah Jamaluddin Ahmad

CHAPTER 7 CARBON NANOTUBES TO REMOVE NICKEL 38
Abdullah Al Mamun, Ma’an Alkhatib, Siti Melor Asnida Zainudin

CHAPTER 8 ADSORPTION ISOTHERM OF CARBON NANOTUBES IN REMOVING HEAVY METALS 44
Abdullah Al Mamun, Faridah Yusof, Norsyafini Ishak

CHAPTER 9 CARBON NANOFIBERS TO REMOVE NICKEL 50
Abdullah Al Mamun, Ma’an Alkhatib, Hafizza Shaqahan

CHAPTER 10 ADSORPTION OF LEAD BY CNTS GROWN ON GAC 54
Abdullah Al Mamun, Ma’an Alkhatib, Iman Hawari

CHAPTER 11 ADSORPTION OF CADMIUM BY CNTS GROWN ON GACS 59
Abdullah Al Mamun, Ma’an Alkhatib, Nada Hamid Al Samawi

CHAPTER 12 PERFORMANCE OF CNTS COLUMN IN REMOVING LEAD FROM WATER 63
Abdullah Al Mamun, Md Zahangir Alam, Muhammad Akram Abdul Hadi

CHAPTER 13 STABILITY OF DISPERSION OF (SW-CNT)-CARBOXY-METHYL CELLULOSE (CMC) IN AQUEOUS SOLUTION 68
Ahmad T. Jameel, Mohammed S. Jama and Syarifah R. Kamaruzaman

CHAPTER 14 OPTIMUM COLLOIDAL DISPERSION OF CARBON NANOTUBE IN ETHYLENE GLYCOL USING TRITON X-100 AS DISPERSING AGENT 74
Ahmad T. Jameel, Faridah Yusof, Natriah Ibrahim and Alade A. Olanrewaju

CHAPTER 15 CHARACTERIZATION OF IMMOBILIZED LIPASE ON MULTI-WALLED CARBON NANOTUBE 80
Nur Hidayah Zainan, Maan Fahmi Al-Khatib and Hanzah Mohd. Salleh

CHAPTER 16 PURIFICATION OF SKIM LATEX PROTEIN USING CARBON NANOTUBES AS THE CHROMATOGRAPHIC MEDIA 86
Faridah Yusof and Peer Mohamed
CHAPTER 17 COMPUTATIONAL STUDIES OF ADSORPTION GLYCINE
Ibrahim Ali Noorbatcha, Hamzah Mohd Salleh and Nursafwrooa Abu Talib
92

CHAPTER 18 KINETIC STUDIES ON ENHANCED MERCURY ADSORPTION USING ACTIVATED CARBON
Nassereldeen Kabbashi, Noor Illi
97

CHAPTER 19 ANALYSIS OF CROSS FLOW ULTRAFILTRATION MEMBRANE
Mohammed Saedi Jami, Tariq Jameel and Norasila Binti Ali Mahmud
103

CHAPTER 20 APPLICATION OF CARBON NANOTUBES IMPREGNATED ON ACTIVATED CARBON FOR CADMIUM REMOVAL FROM AQUEOUS SOLUTION
Ma’an Alkhatib, Abdilllah Al-Mamun, Nurhazwani Muhamad Nor
109

CHAPTER 21 BIOPROCESSING OF MORINGA OLEIFERA FOR REMOVAL OF HEAVY METALS (CADMIUM AND CHROMIUM)
Suleyman Aremu Muyibi, Jamal Parveen, Wan Mohd Syaif Wan Sulaiman
117

CHAPTER 22 COAGULATION PERFORMANCE OF BIOACTIVE CONSTITUENTS ISOLATED FROM MORINGA OLEIFERA SEED IN LOW TURBIDITY WATER TREATMENT
Suleyman A. Muyibi, Eman N. Ali, Mohamad Ramlan Mohamed Salleh, Hamzah Mohd Salleh and Md Zahangir Alam
123

CHAPTER 23 DESIGN AND PRODUCTION OF CARBON NANOTUBE-BASED BIOSENSOR
Ma’an Alkhatib, Mohamad Faizal Bin Khamis, Waleed Fekry Faris
130

CHAPTER 24 DESIGN OF AN ADSORPTION SYSTEM FOR THE REMOVAL OF PHENOL FROM WATER USING ACTIVATED CARBON
Ma’an Alkhatib, Ahmad Tariq Jameel, Mohammad N. A. Alherbawi
138

CHAPTER 25 FEASIBILITY STUDY ON THE PRODUCTION OF BIODIESEL FROM MICROALGAE
Ma’an Alkhatib, Md. Zahangir Alam, Salma A. S. Binsilm
148

CHAPTER 26 IDENTIFICATION OF SUITABLE RESIN TO BE MIXED WITH COMMERCIALLY AVAILABLE CASSAVA STARCH FOR RIGID PACKAGING APPLICATION
Ma’an Alkhatib, Noorhaza Bt Alias
155

CHAPTER 27 IMMOBILIZATION OF LIPASE ON MULTI-WALLED CARBON NANOTUBES
Ma’an Alkhatib, Hamzah Mohd Salleh, Anas M. N. Sultan
162

CHAPTER 28 INTEGRATION OF ARTIFICIAL NEURAL NETWORK AND PRINCIPAL COMPONENT ANALYSIS TECHNIQUES FOR WASTEWATER TREATMENT PLANT EVALUATION
Mohammed Saedi Jami, Nassereldeen A. Kabbashi and Mustapha Mujeli
169

CHAPTER 29 ISOLATION OF BACTERIA FROM OIL-CONTAMINATED SOIL FOR CRUDE OIL DEGRADATION
Ma’an Alkhatib, Humaidah Bt Dr Hj Muhammad Nur Lubis, Alade Abass Olanrewaju
175

CHAPTER 30 ISOLATION OF BACTERIA FROM SOIL FOR PLASTICS DEGRADATION
Ma’an Alkhatib, Nur Amalina Binti Ahmad, Alade Abass Olanrewaju
183
CHAPTER 31 OPTIMIZATION OF CELLULASE ENZYME PRODUCTION USING ARTIFICIAL NEURAL NETWORK
Mohammed Saedi Jami, Md. Zahangir Alam and Lamija Subasic

CHAPTER 32 POTENTIAL OF ARTIFICIAL NEURAL NETWORKS IN THE PREDICTION OF WASTEWATER TREATMENT PLANT PERFORMANCE
Mohammed Saedi Jami, Nassereeldeen Ahmed Kabashi and Norhafiza Binti Abdullah

CHAPTER 33 PRODUCTION OF ACTIVATED CARBON FROM OIL PALM EMPTY FRUIT BUNCH FOR ADSORPTION OF CADMIUM IN AQUEOUS SOLUTION
Suleyman A. Mayibi, Ma’an Alkhatib, Jeminat Omotayo Amode

CHAPTER 34 PRODUCTION OF ACTIVATED CARBON FROM PALM OIL EMPTY FRUIT BUNCH BY CHEMICAL ACTIVATION
Ma’an Alkhatib, Monawar Munjdi

CHAPTER 35 REMOVAL OF AQUEOUS ZINC (II) USING PROCESSED MORINGA OLEIFERA SEEDS
Suleyman A. Mayibi, Isam Y. Qudsieh, M. H. A. Rahman

CHAPTER 36 REMOVAL OF COLOUR FROM PALM OIL MILL EFFLUENT USING GRANULAR ACTIVATED CARBON (GAC)
Ma’an Alkhatib, Abdullah Al Mamun, Iqraah Akbar

CHAPTER 37 THERMAL PROPERTIES ENHANCEMENT FOR THE DEVELOPED ETHYLENE VINYL ACETATE/EPOXIDIZED NATURAL RUBBER/CARBON NANOTUBES NANOCOMPOSITES
Faridah Yusof and Norazlina Mohamed Yatim

CHAPTER 38 EFFECT OF CARBON NANOTUBES LOADING ON THE MECHANICAL PROPERTIES OF ETHYLENE VINYL ACETATE/EPOXIDIZED NATURAL RUBBER NANOCOMPOSITES
Faridah Yusof and Norazlina Mohamed Yatim

INDEX
CHAPTER 12

PERFORMANCE OF CNTS COLUMN IN REMOVING LEAD FROM WATER

Abdullah Al Mamun, Md Zahangir Alam, Muhammad Akram Abdul Hadi

Department of Biotechnology Engineering, Faculty of Engineering, International Islamic University Malaysia, Gombak, 50728 Kuala Lumpur, Malaysia.

ABSTRACT

Packed column adsorption was carried out to study the capacity of CNTs grown on GACs to remove Pb from water. The effects of bed heights (0.3m, 0.4m, 0.5m) were studied. Three different bed heights of CNTs packed column adsorption study had revealed few patterns of breakthrough curve for concentration of 10 mg/L, pH 5 and 0.015 L/min flow rates. Performances of CNTs packed columns using 0.4 m bed height, 10 mg/L of lead concentration with pH 5 and flow rate of 0.015 L/min were studied in detail. Since the Department of Environment (DOE) Malaysia limit for lead in wastewater is 0.1 mg/L, the breakthrough time was defined at Ce/Ci = 0.01. Results were obtained in terms of column adsorption capacity, height of mass transfer zone (MTZ) and empty bed contact time (EBCT). The study indicated that CNTs had column adsorption capacity of 0.41 mg/g.

Keywords: adsorption, breakthrough curve, CNTs column, mass transfer zone

INTRODUCTION

This research is correlated to the environmental issue where heavy metals are one of the most dangerous threats to the water quality. Nanotechnology application that would result in improved treatment options might include removal of the minute concentration of contaminants from wastewater and air and “smart materials” or reactive surface coatings that destroy or immobilize toxic components (Hua et al., 2005). Progressively, the practicality of the current practice of meeting the water demands of all users according to increasingly stringent standards has been questioned by water scientists and engineers (Weber et al., 2002).

In connection to this project, CNTs grown on granular activated carbons (GACs). The CNTs grown on GACs was used for the purpose of removing lead (Pb²⁺) which is one of the hazardous heavy metals in wastewater. CNTs have capability of adsorbing pollutants from water, as they exhibit exceptionally large specific surface area (Li et al., 2005). The objectives of the study were, to design and build lab scale packed columns consisting of CNTs grown on GACs and to determine the lifecycle and filtration capacity of the column system in removing lead (Pb) in wastewater.