CURRENT RESEARCH AND DEVELOPMENTS IN BIOTECHNOLOGY ENGINEERING AT IIUM

(VOLUME IV)

Editors:
Ma’an Alkhatib
Abdullah Al Mamun
Faridah Yusof

Department of Biotechnology Engineering
Faculty of Engineering
International Islamic University Malaysia

IIUM Press
CONTENTS

PREFACE viii

CHAPTER 1 REMOVAL OF ZINC FROM WASTEWATER BY CARBON NANOTUBES 1
Nasseraldeen A. Kabbashi, Ahmad Fadzil Ahmad Shuhaizi, Md Z. Alam

CHAPTER 2 REMOVAL CHARACTERISTICS OF MANGANESE (MN2+) BY CNTS 8
Nasseraldeen A. Kabbashi, Suleyman A.M. Mohamed E.S. Mirghani, Farhana I.Y

CHAPTER 3 REMOVAL TECHNIQUES OF CADMIUM FROM WASTEWATER BY CNTS 15
Nasseraldeen A. Kabbashi, Muhammad Fikri Bin Rosly, Suleyman Muyibi

CHAPTER 4 KINETICS OF ACTIVATED CARBON FROM EFB IN MERCURY REMOVAL 21
Nasseraldeen. A. Kabbashi, Ma’an F. Alkhatib, Mohammed Elwathig and IlI Nadirah Bi Jamil

CHAPTER 5 CARBON NANOFIBERS TO REMOVE ARSENIC 26
Abdullah Al Mamun, Ma’an Alkhatib, Zahirah Abd. Kadir

CHAPTER 6 CARBON NANOTUBES TO REMOVE CHROMIUM 32
Abdullah Al Mamun, Ma’an Alkhatib, Aishah Jamaluddin Ahmad

CHAPTER 7 CARBON NANOTUBES TO REMOVE NICKEL 38
Abdullah Al Mamun, Ma’an Alkhatib, Siti Melor Asnida Zainudin

CHAPTER 8 ADSORPTION ISONTHERM OF CARBON NANOTUBES IN REMOVING HEAVY METALS 44
Abdullah Al Mamun, Faridah Yusof, Norsyafini Ishak

CHAPTER 9 CARBON NANOFIBERS TO REMOVE NICKEL 50
Abdullah Al Mamun, Ma’an Alkhatib, Haleema Shajahan

CHAPTER 10 ADSORPTION OF LEAD BY CNTS GROWN ON GAC 54
Abdullah Al Mamun, Ma’an Alkhatib, Iman Havari

CHAPTER 11 ADSORPTION OF CADMIUM BY CNTS GROWN ON GACS 59
Abdullah Al Mamun, Ma’an Alkhatib, Nada Hamid Al Samawi

CHAPTER 12 PERFORMANCE OF CNTS COLUMN IN REMOVING LEAD FROM WATER 63
Abdullah Al Mamun, Md Zahirang Alam, Muhammad Akram Abdul Hadi

CHAPTER 13 STABILITY OF DISPERSION OF (SW-CNT)-CARBOXY-METHYL CELLULOSE (CMC) IN AQUEOUS SOLUTION 68
Ahmad T. Jameel, Mohammed S. Jami and Syarifah R. Kamaruzaman

CHAPTER 14 OPTIMUM COLLOIDAL DISPERSION OF CARBON NANOTUBE IN ETHYLENE GLYCOL USING TRITON X-100 AS DISPERSING AGENT 74
Ahmad T. Jameel, Faridah Yusof, Natrah Ibrahim and Alade A. Olanrewaju

CHAPTER 15 CHARACTERIZATION OF IMMOBILIZED LIPASE ON MULTI-WALLED CARBON NANOTUBE 80
Nur Hidayah Zainan, Maan Fahmi Al-Khatib and Hanzah Mohd. Salleh

CHAPTER 16 PURIFICATION OF SKIM LATEX PROTEIN USING CARBON NANOTUBES AS THE CHROMATOGRAPHIC MEDIA 86
Faridah Yusof and Peer Mohamed
CHAPTER 17 COMPUTATIONAL STUDIES OF ADSORPTION GLYCINE
Ibrahim Ali Noorbatcha, Hamzah Mohd Salleh and Nursafwaoa Abu Talib

CHAPTER 18 KINETIC STUDIES ON ENHANCED MERCURY ADSORPTION USING
ACTIVATED CARBON
Nassereldeen Kabbashi, Noor Illi

CHAPTER 19 ANALYSIS OF CROSS FLOW ULTRAFILTRATION MEMBRANE
Mohammed Saedi Jami, Tariq Joneel and Norasila Binti Ali Mahmud

CHAPTER 20 APPLICATION OF CARBON NANOTUBES IMPREGNATED ON
ACTIVATED CARBON FOR CADMIUM REMOVAL FROM AQUEOUS
SOLUTION
Ma’an Alkhatib, Abdullah Al-Mamun, Nurhazwani Muhamad Nor

CHAPTER 21 BIOPROCESSING OF MORGINGA OLEIFERA FOR REMOVAL OF HEAVY
METALS (CADMIUM AND CHROMIUM)
Suleyman Aremu Muyibi, Jamal Parveen, Wan Mohd Syraif Wan Sulaiman

CHAPTER 22 COAGULATION PERFORMANCE OF BIOACTIVE CONSTITUENTS
ISOLATED FROM MORGINGA OLEIFERA SEED IN LOW TURBIDITY
WATER TREATMENT
Suleyman A. Muyibi, Eman N. Ali, Mohamad Ramlan Mohamed Salleh, Hamzah
Mohd Salleh and Md Zahangir Alam

CHAPTER 23 DESIGN AND PRODUCTION OF CARBON NANOTUBE-BASED
BIOSENSOR
Ma’an Alkhatib, Mohamad Faizal Bin Khamis, Waleed Fekry Faris

CHAPTER 24 DESIGN OF AN ADSORPTION SYSTEM FOR THE REMOVAL OF
PHENOL FROM WATER USING ACTIVATED CARBON
Ma’an Alkhatib, Ahmad Tariq Joneel, Mohammad N. A. Altherbawi

CHAPTER 25 FEASIBILITY STUDY ON THE PRODUCTION OF BIODIESEL FROM
MICROALGAE
Ma’an Alkhatib, Md. Zahangir Alam, Salma A. S. Binsilm

CHAPTER 26 IDENTIFICATION OF SUITABLE RESIN TO BE MIXED WITH
COMMERCIALY AVAILABLE CASSAVA STARCH FOR RIGID
PACKAGING APPLICATION
Ma’an Alkhatib, Noorhaza Bt Alias

CHAPTER 27 IMMOBILIZATION OF LIPASE ON MULTI-WALLED CARBON
NANOTUBES
Ma’an Alkhatib, Hamzah Mohd Salleh, Anas M. N. Sultan

CHAPTER 28 INTEGRATION OF ARTIFICIAL NEURAL NETWORK AND PRINCIPAL
COMPONENT ANALYSIS TECHNIQUES FOR WASTEWATER
TREATMENT PLANT EVALUATION
Mohammed Saedi Jami, Nassereldeen A. Kabbashi and Mustapha Mufjeli

CHAPTER 29 ISOLATION OF BACTERIA FROM OIL-CONTAMINATED SOIL FOR
CRUDE OIL DEGRADATION
Ma’an Alkhatib, Humaiedah Bt Dr Hj Mohammad Nur Lubis, Alade Abass
Olanrewaju

CHAPTER 30 ISOLATION OF BACTERIA FROM SOIL FOR PLASTICS DEGRADATION
Ma’an Alkhatib, Nur Amalina Binti Ahmad, Alade Abass Olanrewaju
CHAPTER 31 OPTIMIZATION OF CELLULASE ENZYME PRODUCTION USING ARTIFICIAL NEURAL NETWORK
Mohammed Saedi Jami, Md. Zahangir Alam and Lamija Subasic

CHAPTER 32 POTENTIAL OF ARTIFICIAL NEURAL NETWORKS IN THE PREDICTION OF WASTEWATER TREATMENT PLANT PERFORMANCE
Mohammed Saedi Jami, Nassereeldeen Ahmed Kabashi and Norhafiza Binti Abdullah

CHAPTER 33 PRODUCTION OF ACTIVATED CARBON FROM OIL PALM EMPTY FRUIT BUNCH FOR ADSORPTION OF CADMIUM IN AQUEOUS SOLUTION
Suleyman A. Mu'ibbi, Ma'an Alkhatib, Jeminat Omotayo Amode

CHAPTER 34 PRODUCTION OF ACTIVATED CARBON FROM PALM OIL EMPTY FRUIT BUNCH BY CHEMICAL ACTIVATION
Ma'an Alkhatib, Monawar Munjed

CHAPTER 35 REMOVAL OF AQUEOUS ZINC (II) USING PROCESSED MORINGA OLEIFERA SEEDS
Suleyman A. Mu'ibbi, Isam Y. Qudsieh, M. H. A. Rahman

CHAPTER 36 REMOVAL OF COLOUR FROM PALM OIL MILL EFFLUENT USING GRANULAR ACTIVATED CARBON (GAC)
Ma'an Alkhatib, Abdullah Al Mamun, Iqrah Akbar

CHAPTER 37 THERMAL PROPERTIES ENHANCEMENT FOR THE DEVELOPED OF ETHYLENE VINYL ACETATE/EPOXIDIZED NATURAL RUBBER/CARBON NANOTUBES NANOCOMPOSITES
Faridah Yusof and Norazlina Mohamed Yatim

CHAPTER 38 EFFECT OF CARBON NANOTUBES LOADING ON THE MECHANICAL PROPERTIES OF ETHYLENE VINYL ACETATE/EPOXIDIZED NATURAL RUBBER NANOCOMPOSITES
Faridah Yusof and Norazlina Mohamed Yatim

INDEX
CHAPTER 7

CARBON NANOTUBES TO REMOVE NICKEL

Abdullah Al Mamun, Ma’an Alkhatib, Siti Melor Asnida Zainudin

Department of Biotechnology Engineering, Faculty of Engineering, International Islamic University Malaysia, Gombak, 50728 Kuala Lumpur, Malaysia.

ABSTRACT

Adsorption experiments were carried out to evaluate the performance of carbon nanotubes (CNTs) as the adsorbent for the removal of nickel ions (Ni^{2+}) from aqueous solution. The effects of solution pH, CNT dosage, contact time and agitation speed were studied at 25°C with constant initial nickel concentration of 5 mg/L. The adsorption study has demonstrated that the highest removal of Ni^{2+} is 56.52%. The statistical optimization of the experimental conditions was carried out using central composite design (CCD) to develop the regression model to determine the optimum conditions. The data were further analyzed to evaluate the interaction between the parameters involved. The adsorption capacity of CNTs and powdered activated carbon (PACs) was also compared. From this study, it was determined that the optimum conditions for maximum removal of nickel are pH 8, CNTs dosage of 300 mg/L, contact time of 50 minutes and agitation speed of 100 rpm. This study also showed that impregnated CNTs have adsorption capacity of 16.1 mg/g.

Keywords: adsorption, nanotubes, adsorption, agitation, optimization

INTRODUCTION

Nanotechnology literally means any technology performed on a nano scale that has applications in the real world. Basically, it involves the management of material with nano scale dimensions, which range from 1 to 100 nanometers. Their nano size dimensions are one of the important reasons for their unique properties which normally could not be found from other materials. The science and technology research in nanotechnology promises breakthrough in various areas such as material and manufacturing, electronics, medicine and biotechnology. Hence, it can be said that this new technology may provide the building blocks for further technological progress and improved standards of living.

One of the most advance materials developed by nanotechnology is Carbon Nanotubes (CNTs). CNTs which were discovered in 1991 by Sujo Iijima have attracted attention from physicists, chemists, engineers and other allied sciences. Fundamentally, their name was derived from their size, since the diameter of a CNT is in nanometers, but they can be up to several micrometers in length. CNTs resemble a coiled-up graphene sheet and their remarkable mechanical, electrical, thermal and chemical properties have offered significant potential in various fields. For example, the large surface area, cylindrical structures and