CURRENT RESEARCH AND DEVELOPMENT IN BIOTECHNOLOGY ENGINEERING AT IIUM

VOLUME IV

Editors:
Ma’an Alkhatib
Abdullah Al Mamun
Faridah Yusof

IIUM PRESS
INTERNATIONAL ISLAMIC UNIVERSITY MALAYSIA
CURRENT RESEARCH AND DEVELOPMENTS IN BIOTECHNOLOGY ENGINEERING AT IIUM

(VOLUME IV)

Editors:
Ma’an Alkhatib
Abdullah Al Mamun
Faridah Yusof

Department of Biotechnology Engineering
Faculty of Engineering
International Islamic University Malaysia

IIUM Press
CONTENTS

PREFACE viii

CHAPTER 1 REMOVAL OF ZINC FROM WASTEWATER BY CARBON NANOTUBES 1
Nassereldeen A. Kabbashi, Ahmad Fadzil Ahmad Shuhaili, Md Z. Alam

CHAPTER 2 REMOVAL CHARACTERISTICS OF MANGANESE (MN2+) BY CNTS 8
Nassereldeen A. Kabbashi, Suleyman A.M, Mohamed E.S. Mirghani, Farhana I.Y

CHAPTER 3 REMOVAL TECHNIQUES OF CADMIUM FROM WASTEWATER BY CNTS 15
Nassereldeen A. Kabbashi, Muhammed Fikri Bin Rosly, Suleyman Muyibi

CHAPTER 4 KINETICS OF ACTIVATED CARBON FROM EFB IN MERCURY REMOVAL 21
Nassereldeen A. Kabbashi, Ma'an F. Alkhatib, Mohammed Elwathig and Ilil Nadirah Bi Jamil

CHAPTER 5 CARBON NANOFIBERS TO REMOVE ARSENIC 26
Abdullah Al Mamun, Ma'an Alkhatib, Zahirah Abd. Kadir

CHAPTER 6 CARBON NANOTUBES TO REMOVE CHROMIUM 32
Abdullah Al Mamun, Ma'an Alkhatib, Aishah Jamaluddin Ahmad

CHAPTER 7 CARBON NANOTUBES TO REMOVE NICKEL 38
Abdullah Al Mamun, Ma'an Alkhatib, Siti Melor Asnida Zainudin

CHAPTER 8 ADSORPTION ISOTHERM OF CARBON NANOTUBES IN REMOVING HEAVY METALS 44
Abdullah Al Mamun, Faridah Yusof, Norsyafini Ishak

CHAPTER 9 CARBON NANOFIBERS TO REMOVE NICKEL 50
Abdullah Al Mamun, Ma'an Alkhatib, Hallena Shajahan

CHAPTER 10 ADSORPTION OF LEAD BY CNTS GROWN ON GAC 54
Abdullah Al Mamun, Ma'an Alkhatib, Iman Havari

CHAPTER 11 ADSORPTION OF CADMIUM BY CNTS GROWN ON GACS 59
Abdullah Al Mamun, Ma'an Alkhatib, Nada Hamid Al Samawi

CHAPTER 12 PERFORMANCE OF CNTS COLUMN IN REMOVING LEAD FROM WATER 63
Abdullah Al Mamun, Md Zahangir Alam, Mohammad Akram Abdul Hadi

CHAPTER 13 STABILITY OF DISPERSION OF (SW-CNT)-CARBOXY-METHYL CELLULOSE (CMC) IN AQUEOUS SOLUTION 68
Ahmad T. Jameel, Mohammed S. Jamal and Syarifah R. Kamaruzaman

CHAPTER 14 OPTIMUM COLLOIDAL DISPERSION OF CARBON NANOTUBE IN ETHERYLENE GLYCOL USING TRITON X-100 AS DISPERSING AGENT 74
Ahmad T. Jameel, Faridah Yusof, Natrah Ibrahim and Alade A. Olanrewaju

CHAPTER 15 CHARACTERIZATION OF IMMOBILIZED LIPASE ON MULTI-WALLED CARBON NANOTUBE 80
Nur Hidayah Zainan, Maan Fahmi Al-Khatib and Hanzah Mohd. Salleh

CHAPTER 16 PURIFICATION OF SKIM LATEX PROTEIN USING CARBON NANOTUBES AS THE CHROMATOGRAPHIC MEDIA 86
Faridah Yusof and Peer Mohamed
<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>17</td>
<td>COMPUTATIONAL STUDIES OF ADSORPTION GLYCINE</td>
<td>92</td>
</tr>
<tr>
<td></td>
<td>Ibrahim Ali Noorbatches, Hamzah Mohd Salleh and Nursafwora Abu Talib</td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>KINETIC STUDIES ON ENHANCED MERCURY ADSORPTION USING ACTIVATED CARBON</td>
<td>97</td>
</tr>
<tr>
<td></td>
<td>Nassereldeen Kabbashi, Noor Ilili</td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>ANALYSIS OF CROSS FLOW ULTRAFILTRATION MEMBRANE</td>
<td>103</td>
</tr>
<tr>
<td></td>
<td>Mohammed Saedi Jami, Tariq Jameel and Norasila Binti Ali Mahmud</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>APPLICATION OF CARBON NANOTUBES IMPPREGNATED ON ACTIVATED CARBON FOR CADMIUM REMOVAL FROM AQUEOUS SOLUTION</td>
<td>109</td>
</tr>
<tr>
<td></td>
<td>Ma’an Alkhatib, Abdillah Al-Mamun, Nurhazwani Muhamad Nor</td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>BIOPROCESSING OF MORINGA OLEIFERA FOR REMOVAL OF HEAVY METALS (CADMIUM AND CHROMIUM)</td>
<td>117</td>
</tr>
<tr>
<td></td>
<td>Suleyman Aremu Muyibi, Jamal Parveen, Wan Mohd Syraif Wan Sulaiman</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>COAGULATION PERFORMANCE OF BIOACTIVE CONSTITUENTS ISOLATED FROM MORINGA OLEIFERA SEED IN LOW TURBIDITY WATER TREATMENT</td>
<td>123</td>
</tr>
<tr>
<td></td>
<td>Suleyman A. Muyibi, Eman N. Ali, Mohamad Ramlan Mohamed Salleh, Hamzah Mohd Salleh and Md Zahangir Alam</td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>DESIGN AND PRODUCTION OF CARBON NANOTUBE-BASED BIOSENSOR</td>
<td>130</td>
</tr>
<tr>
<td></td>
<td>Ma’an Alkhatib, Mohamad Faizal Bin Khamis, Waleed Fekry Faris</td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>DESIGN OF AN ADSORPTION SYSTEM FOR THE REMOVAL OF PHENOL FROM WATER USING ACTIVATED CARBON</td>
<td>138</td>
</tr>
<tr>
<td></td>
<td>Ma’an Alkhatib, Ahmad Tariq Jameel, Mohammad N. A. Alberhawi</td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>FEASIBILITY STUDY ON THE PRODUCTION OF BIODIESEL FROM MICROALGAE</td>
<td>148</td>
</tr>
<tr>
<td></td>
<td>Ma’an Alkhatib, Md. Zahangir Alam, Salma A. S. Binsilm</td>
<td></td>
</tr>
<tr>
<td>26</td>
<td>IDENTIFICATION OF SUITABLE RESIN TO BE MIXED WITH COMMERCIALY AVAILABLE CASSAVA STARCH FOR RIGID PACKAGING APPLICATION</td>
<td>155</td>
</tr>
<tr>
<td></td>
<td>Ma’an Alkhatib, Noorhaza Bt Alias</td>
<td></td>
</tr>
<tr>
<td>27</td>
<td>IMMOBILIZATION OF LIPASE ON MULTI-WALLED CARBON NANOTUBES</td>
<td>162</td>
</tr>
<tr>
<td></td>
<td>Ma’an Alkhatib, Hamzah Mohd Salleh, Anas M. N. Sultan</td>
<td></td>
</tr>
<tr>
<td>28</td>
<td>INTEGRATION OF ARTIFICIAL NEURAL NETWORK AND PRINCIPAL COMPONENT ANALYSIS TECHNIQUES FOR WASTEWATER TREATMENT PLANT EVALUATION</td>
<td>169</td>
</tr>
<tr>
<td></td>
<td>Mohammed Saedi Jami, Nassereldeen A. Kabbashi and Mustapha Mufieli</td>
<td></td>
</tr>
<tr>
<td>29</td>
<td>ISOLATION OF BACTERIA FROM OIL-CONTAMINATED SOIL FOR CRUDE OIL DEGRADATION</td>
<td>175</td>
</tr>
<tr>
<td></td>
<td>Ma’an Alkhatib, Humaidah Bt Dr Hj Muhammad Nur Lubis, Alade Abass Olanrewaju</td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>ISOLATION OF BACTERIA FROM SOIL FOR PLASTICS DEGRADATION</td>
<td>183</td>
</tr>
<tr>
<td></td>
<td>Ma’an Alkhatib, Nur Amalina Binti Ahmad, Alade Abass Olanrewaju</td>
<td></td>
</tr>
</tbody>
</table>
CHAPTER 31 OPTIMIZATION OF CELLULASE ENZYME PRODUCTION USING ARTIFICIAL NEURAL NETWORK
Mohammed Saedi Jami, Md. Zahangir Alam and Lamija Subasic 190

CHAPTER 32 POTENTIAL OF ARTIFICIAL NEURAL NETWORKS IN THE PREDICTION OF WASTEWATER TREATMENT PLANT PERFORMANCE
Mohammed Saedi Jami, Nassereeldeen Ahmed Kabashi and Norhafiza Binti Abdullah 196

CHAPTER 33 PRODUCTION OF ACTIVATED CARBON FROM OIL PALM EMPTY FRUIT BUNCH FOR ADSORPTION OF CADMIUM IN AQUEOUS SOLUTION
Suleyman A. Muyibi, Ma’an Alkhatib, Jeminat Omonayo Amode 202

CHAPTER 34 PRODUCTION OF ACTIVATED CARBON FROM PALM OIL EMPTY FRUIT BUNCH BY CHEMICAL ACTIVATION
Ma’an Alkhatib, Monawar Munjid 209

CHAPTER 35 REMOVAL OF AQUEOUS ZINC (II) USING PROCESSED MORINGA OLEIFERA SEEDS
Suleyman A. Muyibi, Isam Y. Qudsieh, M. H. A. Rahman 217

CHAPTER 36 REMOVAL OF COLOUR FROM PALM OIL MILL EFFLUENT USING GRANULAR ACTIVATED CARBON (GAC)
Ma’an Alkhatib, Abdullah Al Mamun, Iqrah Akbar 224

CHAPTER 37 THERMAL PROPERTIES ENHANCEMENT FOR THE DEVELOPTED ETHYLENE VINYL ACETATE/EPOXIDIZED NATURAL RUBBER/CARBON NANOTUBES NANOCOMPOSITES
Faridah Yusof and Norazlina Mohamed Yatim 232

CHAPTER 38 EFFECT OF CARBON NANOTUBES LOADING ON THE MECHANICAL PROPERTIES OF ETHYLENE VINYL ACETATE/EPOXIDIZED NATURAL RUBBER NANOCOMPOSITES
Faridah Yusof and Norazlina Mohamed Yatim 242

INDEX 251
CHAPTER 4

KINETICS OF ACTIVATED CARBON FROM EFB IN MERCURY REMOVAL

Nassereldeen. A. Kabbashi, Ma’an F. Alkhatib, Mohammed Elwathig and Ili Nadirah Bt Jamil

Department of Biotechnology Engineering, Faculty of Engineering, International Islamic University Malaysia, Gombak, 50728 Kuala Lumpur, Malaysia.

ABSTRACT

This study is to research on adsorption or mercury from aqueous solution on powdered activated carbons (PAC) that is prepared from Empty Fruit Bunch (EFB). Materials used for adsorption usually determine the operational cost. If the materials used are cheaper and yet still effective, this can reduce the overall operational cost. Hence, this research is an attempt to use an activated carbon which is more economic and effective sorbent to adsorb mercury from water body. Malaysia is one of the major producers and exporters for palm oil. There are many plantation estates in order to fulfill the increasing demands from the world on palm oil. Therefore, there will be huge amount of waste generated from palm oil production. One of the wastes generated from palm oil production is the EFB. EFB will be used as the sources of activated carbon as the sorbent which will be to adsorb and control Hg(II) ion from industrial liquid streams. The advantage of using EFB is that it is a local material source and it is at abundance. Therefore, by studying this project, it may help to expose the usage of EFB and hence create a better waste management in the palm oil industry since it can be reused and recycled to another purpose

Keywords: aqueous solution, EFB, kinetic, mercury

INTRODUCTION

Mercury exists in two forms which are organic where it occurs naturally in ground water and inorganic such as from industrial discharge. Municipal landfills, sewage, metal refining and chemical manufacturing are significant potential emitters of mercury to land and water. Mercury can naturally occur in the ground water and also can occur due to industrial discharge into the river stream. Although both forms are toxic, it is the organic form that exhibits extreme biological toxicity towards living creatures (Ellis and Robert, 1996). Mercury occurs in different forms in the environment. Methyl mercury is the main compound which accumulates in seafood and freshwater fish. The methyl mercury will travel to the brain as that is the most sensitive organ to methyl mercury and the damage during the early development is likely to be widespread and permanent. Mercury is currently a global problem as it is estimated that approximately 3400 tons per year of mercury is emitted globally due to human activities (Ahalya, 2007). Cleanup technologies which are capable of treating large volumes of soil, water or sediment contaminated with relatively low mercury in a cost-effective way are urgently needed.