INTERFACING ELECTRONIC FOR MEASUREMENT, SIGNAL PROCESSING AND WIRELESS COMMUNICATION Edited by Sheroz Khan, International Islamic University Malaysia AHM Zahirul Alam, International Islamic University Malaysia Anis Nurashikin Nordin, International Islamic University Malaysia # INTERFACING ELECTRONIC FOR MEASUREMENT, SIGNAL PROCESSING AND WIRELESS COMMUNICATION Edited by Sheroz Khan, International Islamic University Malaysia AHM Zahirul Alam, International Islamic University Malaysia Anis Nurashikin Nordin, International Islamic University Malaysia #### Published by: IIUM Press International Islamic University Malaysia First Edition, 2011 ©IIUM Press, IIUM All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise, without any prior written permission of the publisher. Perpustakaan Negara Malaysia Cataloguing-in-Publication Data Sheroz Khan, AHM Zahirul Alam & Anis Nurashikin Nordin: Interfacing Electronic for Measurement, Signal Processing and Wireless Communication. ISBN: 978-967-418-171-0 Member of Majlis Penerbitan Ilmiah Malaysia – MAPIM (Malaysian Scholarly Publishing Council) ### Printed By: **IIUM PRINTING SDN.BHD.** No. 1, Jalan Industri Batu Caves 1/3 Taman Perindustrian Batu Caves Batu Caves Centre Point 68100 Batu Caves Selangor Darul Ehsan Tel: +603-6188 1542 / 44 / 45 Fax: +603-6188 1543 EMAIL: iiumprinting@yahoo.com #### **CONTENTS** | Chapter | Title | Page | |---------|---|------| | 1 | INDUCTIVE SENSOR | 1 | | | Atika Arshad, RumanaTasnim, Sheroz Khan, AHM Zahirul | | | | Alam | | | 2 | WIRELESS TRANSFER OF LOW-POWER TO IMPLANTED | 8 | | | BIOMEDICAL DEVICES: INTRODUCTION AND 2-D COIL | | | | PARAMETERS | | | | Imran M. Khan, Sheroz Khan, Othman O. Khalifa | | | 3 | WIRELESS TRANSFER OF POWER TO LOW-POWER | 14 | | | IMPLANTED BIOMEDICAL DEVICES: 3-DIMENSIONAL | | | | COIL DESIGN CONSIDERATIONS | | | | Imran M. Khan, Sheroz Khan, Othman O. Khalifa | | | 4 | WIRELESS TRANSFER OF LOW-POWER TO IMPLANTED | 22 | | | BIOMEDICAL DEVICES: INDUCTIVE LINK DESIGN | | | | Imran M. Khan, Aminullah Khan, Sheroz Khan, Othman O. | | | | Khalifa | | | 5 | WIRELESS TRANSFER OF LOW-POWER TO IMPLANTED | 28 | | | BIOMEDICAL DEVICES: RECTIFIER DESIGN | | | | Imran M. Khan, Sheroz Khan, Othman O. Khalifa | | | 6 | DATA CONVERSION BASIC CONCEPTS | 36 | | | Ma Li Ya, Sheroz Khan, Anis Nurashikin | | | 7 | NYQUIST-RATE ANALOG-TO-DIGITAL CONVERTER | 41 | | | Ma Li Ya, Sheroz Khan, Anis Nurashikin | | | 8 | OVERSAMPLING ANALOG-TO-DIGITAL CONVERTER | 47 | | | Ma Li Ya, Sheroz Khan, Anis Nurashikin | | | 9 | SWITCHED-CAPACITOR INTEGRATOR DESIGN | 53 | | | Ma Li Ya, Sheroz Khan, Anis Nurashikin | | | 10 | CMOS OPERATIONAL AMPLIFIER DESIGN | 60 | | | Ma Li Ya, Sheroz Khan, Anis Nurashikin | | | 11 | DIGITAL-TO-ANALOG CONVERTER | 68 | |----|--|-----| | | Ma Li Ya, Sheroz Khan, Anis Nurashikin | | | 12 | CONVETERS RESULTS VERIFICATIONS | 73 | | | Ma Li Ya, Sheroz Khan, Anis Nurashikin | | | 13 | DEVELOPMENT OF WEARABLE REFLECTANCE PULSE | 77 | | | OXIMETRY FOR TELEHEALTH MONITORING SYSTEM | | | | Muhammad Arham, Syed Zulfauzi, Othman O. Khalifa | | | 14 | DESIGN OF CAPACITIVE MEASURING SYSTEM FOR HIGH | 83 | | | FREQUENCY BAND TRANSDUCER | | | | Nurul Arfah binti Che Mustapha, AHM Zahirul Alam, Sheroz | | | | Khan | | | 15 | PRINCIPLE OF CAPACITANCE TO VOLTAGE CONVERTER | 89 | | | Nurul Arfah binti Che Mustapha, AHM Zahirul Alam, Sheroz | | | | Khan | | | 16 | CMOS OPERATIONAL AMPLIFIER TESTING FOR | 95 | | | CAPACITIVE TO VOLTAGE CONVERTER | | | | Nurul Arfah binti Che Mustapha, AHM Zahirul Alam, Sheroz | | | | Khan | | | 17 | MATHEMATICAL MODEL FOR CONTACTLESS | 102 | | | MEASUREMENT | | | | Nurul Arfah binti Che Mustapha, AHM Zahirul Alam, Sheroz | | | | Khan | | | 18 | FREQUENCY RESPONSE OF A CONTACTLESS | 107 | | | MEASUREMENT | | | | Nurul Arfah binti Che Mustapha, AHM Zahirul Alam, Sheroz | | | | Khan | | | 19 | A MATHEMATICAL STUDY OF A THERMISTOR ASTABLE | 113 | | | MULTIVIBRATOR IN A LINEARIZATION TECHNIQUE | | | | Nurul Arfah binti Che Mustapha, AHM Zahirul Alam, Sheroz | | | | Khan | | | 20 | A STUDY OF LINEARIZATION TECHNIQUE USING A | 117 | |----|--|-----| | | NONLINEAR THERMISTOR | | | | Nurul Arfah binti Che Mustapha, AHM Zahirul Alam, Sheroz | | | | Khan | | | 21 | COGNITIVE RADIO VS INTELLIGENT ANTENNA | 123 | | | Siti Rabani Mat Nawi, Nurul Farhah Toha, Khaizuran Abdullah, | | | | M. Rafiqul Islam, Sheroz Khan | | | 22 | UWB PULSE GENERATION AND MODULATION CIRCUITS | 134 | | | FOR BIOMEDICAL IMPLANTS | | | | Mokhaled M., Mohammed, Sheroz Khan, Jalel Chebil, Khaled | | | | A. S. Al-Khateeb, Imran Moez Khan | | | 23 | UWB COMMUNICATIONS FOR BIOMEDICAL IMPLANTS | 141 | | | Mokhaled M. Mohammed, Sheroz Khan, Jalel Chebil, Khalid A. | | | | S. Al-Khateeb, Imran Moez Khan | | | 24 | UWB PULSE GENERATION FOR BIOMEDICAL IMPLANTS | 145 | | | Mokhaled M., Mohammed, Sheroz Khan, Jalel Chebil, Khaled | | | | A. S. Al-Khateeb, Imran Moez Khan | | | 25 | ULTRA-WIDE BAND TECHNOLOGY | 149 | | | Mokhaled M., Mohammed, Sheroz Khan, Jalel Chebil, Khaled | | | | A. S. Al-Khateeb, Imran Moez Khan | | | 26 | MVL ADC DESIGN AND SIMULATION | 153 | | | Soheli Farhana, AHM Zahirul Alam, Sheroz Khan | | | 27 | MVL DESIGN AND CURRENT MODE CIRCUIT ELEMENTS | 159 | | | Soheli Farhana, AHM Zahirul Alam, Sheroz Khan | | | 28 | NOISE MODULATED CRYPTOGRAPHIC GENERATION FOR | 164 | | | USE IN UWB WIRELESS COMMUNICATION | | | | Siti HazwaniYaacob, Sigit Puspito Wigati Jarot, Sheroz Khan | | | 29 | UWB PULSE GENERATION AND SHAPING: ANALYSIS | 173 | | | AND SIMULATION RESULTS | | | | Zeeshan Shahid, Sheroz Khan, AHM Zahirul Alam | | | 30 | SIMULATIONS OF RESISTANCE VARIATIONS TO PULSE | 177 | |----|---|-----| | | GENERATOR CIRCUITS | | | | Zeeshan Shahid, Sheroz Khan, AHM Zahirul Alam | | | 31 | PULSE OXIMETRY DESIGN USING ARDUINO BOARD | 184 | | | Muhammad Arham, Syed Zulfauzi and Othman O. Khalifa | | #### Chapter 22 ### UWB PULSE GENERATION AND MODULATION CIRCUITS FOR BIOMEDICAL IMPLANTS MOKHALED M., MOHAMMED, SHEROZ KHAN, JALEL CHEBIL, KHALED A. S. AL-KHATEEB, IMRAN MOEZ KHAN #### 22.1. INTRODUCTION A UWB communications system consists of a number of building blocks similar to those of conventional narrow band systems. There are two main approaches to transmit data using UWB pulses. The first approach is to generate a continuous stream of pulses and modulate the pulses based on the data. The second approach is to modulate the data and then pass the modulated data through the pulse generator to generate the corresponding pulses. The latter is more popular in literature as the main focus of researchers, in general, is to minimize power consumption and following this approach the pulse generator circuit can be switched off during the idle operation period. Those to approaches are illustrated in Fig. 22.1 below: Fig. 22.1: (a). UWB system outline 1. (b) UWB system outline 2. The FCC (The Federal Communications Commission) has set a very firm restriction on the radiation power. The bandwidth was limited to the frequency band between 3.1-10.6 GHz. The maximum emitted power was also limited to -41.3 dBm/MHz. The FCC also defined the UWB signals as the signals of 500MHz bandwidth or more. That is equivalent to a fractional bandwidth of 20 percent at the -10 dB boundary (Martel, 2001).