
INTERFACING ELECTRONIC FOR MEASUREMENT, SIGNAL PROCESSING AND WIRELESS COMMUNICATION

Edited by

Sheroz Khan, International Islamic University Malaysia AHM Zahirul Alam, International Islamic University Malaysia Anis Nurashikin Nordin, International Islamic University Malaysia

INTERFACING ELECTRONIC FOR MEASUREMENT, SIGNAL PROCESSING AND WIRELESS COMMUNICATION

Edited by

Sheroz Khan, International Islamic University Malaysia
AHM Zahirul Alam, International Islamic University Malaysia
Anis Nurashikin Nordin, International Islamic University Malaysia

Published by: IIUM Press International Islamic University Malaysia

First Edition, 2011 ©IIUM Press, IIUM

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise, without any prior written permission of the publisher.

Perpustakaan Negara Malaysia

Cataloguing-in-Publication Data

Sheroz Khan, AHM Zahirul Alam & Anis Nurashikin Nordin: Interfacing Electronic for Measurement, Signal Processing and Wireless Communication.

ISBN: 978-967-418-171-0

Member of Majlis Penerbitan Ilmiah Malaysia – MAPIM (Malaysian Scholarly Publishing Council)

Printed By: **IIUM PRINTING SDN.BHD.**

No. 1, Jalan Industri Batu Caves 1/3
Taman Perindustrian Batu Caves
Batu Caves Centre Point
68100 Batu Caves
Selangor Darul Ehsan

Tel: +603-6188 1542 / 44 / 45 Fax: +603-6188 1543 EMAIL: iiumprinting@yahoo.com

CONTENTS

Chapter	Title	Page
1	INDUCTIVE SENSOR	1
	Atika Arshad, RumanaTasnim, Sheroz Khan, AHM Zahirul	
	Alam	
2	WIRELESS TRANSFER OF LOW-POWER TO IMPLANTED	8
	BIOMEDICAL DEVICES: INTRODUCTION AND 2-D COIL	
	PARAMETERS	
	Imran M. Khan, Sheroz Khan, Othman O. Khalifa	
3	WIRELESS TRANSFER OF POWER TO LOW-POWER	14
	IMPLANTED BIOMEDICAL DEVICES: 3-DIMENSIONAL	
	COIL DESIGN CONSIDERATIONS	
	Imran M. Khan, Sheroz Khan, Othman O. Khalifa	
4	WIRELESS TRANSFER OF LOW-POWER TO IMPLANTED	22
	BIOMEDICAL DEVICES: INDUCTIVE LINK DESIGN	
	Imran M. Khan, Aminullah Khan, Sheroz Khan, Othman O.	
	Khalifa	
5	WIRELESS TRANSFER OF LOW-POWER TO IMPLANTED	28
	BIOMEDICAL DEVICES: RECTIFIER DESIGN	
	Imran M. Khan, Sheroz Khan, Othman O. Khalifa	
6	DATA CONVERSION BASIC CONCEPTS	36
	Ma Li Ya, Sheroz Khan, Anis Nurashikin	
7	NYQUIST-RATE ANALOG-TO-DIGITAL CONVERTER	41
	Ma Li Ya, Sheroz Khan, Anis Nurashikin	
8	OVERSAMPLING ANALOG-TO-DIGITAL CONVERTER	47
	Ma Li Ya, Sheroz Khan, Anis Nurashikin	
9	SWITCHED-CAPACITOR INTEGRATOR DESIGN	53
	Ma Li Ya, Sheroz Khan, Anis Nurashikin	
10	CMOS OPERATIONAL AMPLIFIER DESIGN	60
	Ma Li Ya, Sheroz Khan, Anis Nurashikin	

11	DIGITAL-TO-ANALOG CONVERTER	68
	Ma Li Ya, Sheroz Khan, Anis Nurashikin	
12	CONVETERS RESULTS VERIFICATIONS	73
	Ma Li Ya, Sheroz Khan, Anis Nurashikin	
13	DEVELOPMENT OF WEARABLE REFLECTANCE PULSE	77
	OXIMETRY FOR TELEHEALTH MONITORING SYSTEM	
	Muhammad Arham, Syed Zulfauzi, Othman O. Khalifa	
14	DESIGN OF CAPACITIVE MEASURING SYSTEM FOR HIGH	83
	FREQUENCY BAND TRANSDUCER	
	Nurul Arfah binti Che Mustapha, AHM Zahirul Alam, Sheroz	
	Khan	
15	PRINCIPLE OF CAPACITANCE TO VOLTAGE CONVERTER	89
	Nurul Arfah binti Che Mustapha, AHM Zahirul Alam, Sheroz	
	Khan	
16	CMOS OPERATIONAL AMPLIFIER TESTING FOR	95
	CAPACITIVE TO VOLTAGE CONVERTER	
	Nurul Arfah binti Che Mustapha, AHM Zahirul Alam, Sheroz	
	Khan	
17	MATHEMATICAL MODEL FOR CONTACTLESS	102
	MEASUREMENT	
	Nurul Arfah binti Che Mustapha, AHM Zahirul Alam, Sheroz	
	Khan	
18	FREQUENCY RESPONSE OF A CONTACTLESS	107
	MEASUREMENT	
	Nurul Arfah binti Che Mustapha, AHM Zahirul Alam, Sheroz	
	Khan	
19	A MATHEMATICAL STUDY OF A THERMISTOR ASTABLE	113
	MULTIVIBRATOR IN A LINEARIZATION TECHNIQUE	
	Nurul Arfah binti Che Mustapha, AHM Zahirul Alam, Sheroz	
	Khan	

20	A STUDY OF LINEARIZATION TECHNIQUE USING A	117
	NONLINEAR THERMISTOR	
	Nurul Arfah binti Che Mustapha, AHM Zahirul Alam, Sheroz	
	Khan	
21	COGNITIVE RADIO VS INTELLIGENT ANTENNA	123
	Siti Rabani Mat Nawi, Nurul Farhah Toha, Khaizuran Abdullah,	
	M. Rafiqul Islam, Sheroz Khan	
22	UWB PULSE GENERATION AND MODULATION CIRCUITS	134
	FOR BIOMEDICAL IMPLANTS	
	Mokhaled M., Mohammed, Sheroz Khan, Jalel Chebil, Khaled	
	A. S. Al-Khateeb, Imran Moez Khan	
23	UWB COMMUNICATIONS FOR BIOMEDICAL IMPLANTS	141
	Mokhaled M. Mohammed, Sheroz Khan, Jalel Chebil, Khalid A.	
	S. Al-Khateeb, Imran Moez Khan	
24	UWB PULSE GENERATION FOR BIOMEDICAL IMPLANTS	145
	Mokhaled M., Mohammed, Sheroz Khan, Jalel Chebil, Khaled	
	A. S. Al-Khateeb, Imran Moez Khan	
25	ULTRA-WIDE BAND TECHNOLOGY	149
	Mokhaled M., Mohammed, Sheroz Khan, Jalel Chebil, Khaled	
	A. S. Al-Khateeb, Imran Moez Khan	
26	MVL ADC DESIGN AND SIMULATION	153
	Soheli Farhana, AHM Zahirul Alam, Sheroz Khan	
27	MVL DESIGN AND CURRENT MODE CIRCUIT ELEMENTS	159
	Soheli Farhana, AHM Zahirul Alam, Sheroz Khan	
28	NOISE MODULATED CRYPTOGRAPHIC GENERATION FOR	164
	USE IN UWB WIRELESS COMMUNICATION	
	Siti HazwaniYaacob, Sigit Puspito Wigati Jarot, Sheroz Khan	
29	UWB PULSE GENERATION AND SHAPING: ANALYSIS	173
	AND SIMULATION RESULTS	
	Zeeshan Shahid, Sheroz Khan, AHM Zahirul Alam	

30	SIMULATIONS OF RESISTANCE VARIATIONS TO PULSE	177
	GENERATOR CIRCUITS	
	Zeeshan Shahid, Sheroz Khan, AHM Zahirul Alam	
31	PULSE OXIMETRY DESIGN USING ARDUINO BOARD	184
	Muhammad Arham, Syed Zulfauzi and Othman O. Khalifa	

Chapter 21

COGNITIVE RADIO VS INTELLIGENT ANTENNA

SITI RABANI MAT NAWI, NURUL FARHAH TOHA, KHAIZURAN ABDULLAH, M. RAFIQUL ISLAM, SHEROZ KHAN

21.1. DEFINITION

21.1.1. Cognitive Radio

Mobile radio systems have shown rapid growth and hence have increased the awareness for more efficient use of spectrum. With the advancements of technology, the development of radio systems which are dynamic and efficient in terms of spectrum usage can be realised. Cognitive radio coined by Joseph Mitola is one of the advancements which may enhance the adaptive capabilities of radio systems and may contribute to more efficient, versatile and flexible use of spectrum. It is based on software defined radio with added intelligent signal processing, ideally based on logic, analysis and intuition, though early cognitive radios need not meet that level of sophistication. Cognitive radio has the ability to sense its surrounding environment and detect spectrum holes or white spaces, namely unoccupied frequencies, which it can use, rather than a fixed frequency assigned to it by the spectrum manager or regulator, as is currently the case (Omar). In the 1999 paper that first coined the term "cognitive radio", Joseph Mitola III defines a cognitive radio as (Mitola III, 1999): "A radio that employs model based reasoning to achieve a specified level of competence in radio-related domains." However, in his recent popularly cited paper that surveyed the state of cognitive radio, Simon Haykin defines a cognitive radio as (Haykin, 2005): "An intelligent wireless communication system that is aware of its surrounding environment (i.e., outside world), and uses the methodology of understanding-by-building to learn from the environment and adapt its internal states to statistical variations in the incoming RF stimuli by making corresponding changes in certain operating parameters (e.g., transmit-power, carrier frequency, and modulation strategy) in real-time, with two primary objectives in mind:

- · Highly reliable communications whenever and wherever needed;
- · Efficient utilization of the radio spectrum.

21.1.2. Intelligent Antenna

The term smart antenna refers to any antenna array terminated in sophisticated signal processor, which can adjust or adapt its own beam pattern in order to emphasize signals of interest and to minimize interfering signals. Smart antenna generally encompassed both switched beam and beam formed adaptive systems. Switched beam systems have several available fixed beam patterns. A decision is made as to which beam to access, at any given point in time, based upon the requirements of the system. Beam formed adaptive system allows the antenna to steer the beam to any direction of interest while simultaneously