QoS AND MOBILE TECHNOLOGIES

EDITORS:

AISHA-HASSAN ABDALLA HASHIM

OMER MAHMOUD

RASHEED SAEED

DEPARTMENT OF ELECTRICAL AND COMPUTER ENGINEERING INTERNATIONAL ISLAMIC UNIVERSITY MALAYSIA

Published by: HUM Press International Islamic University Malaysia

First Edition, 2011 ©IIUM Press, IIUM

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise, without any prior written permission of the publisher.

Perpustakaan Negara Malaysia

Cataloguing-in-Publication Data

ISBN: 978-967-418-142-0

Member of Majlis Penerbitan Ilmiah Malaysia - MAPIM (Malaysian Scholarly Publishing Council)

Printed by : HIUM PRINTING SDN.BHD.

No. 1, Jalan Industri Batu Caves 1/3
Taman Perindustrian Batu Caves
Batu Caves Centre Point
68100 Batu Caves
Selangor Darul Ehsan

Tel: +603-6188 1542 / 44 / 45 Fax +603-6188 1543 EMAIL: iiumprinting(a yahoo.com

TABLE OF CONTENTS

	TITLE	No
PART 1:QoS APPF	ROACHES	
CHAPTER 1:	Introduction to QoS Approaches	2
CHAPTER 2:	Internet Quality Of Service Architectures	1 1
CHAPTER 3:	Integrated Services	17
CHAPTER 4:	Differentiated Services	21
CHAPTER 5:	Quality Of Service (QoS) Ad-Hoc On-Demand Distance Vector (AODV)	27
CHAPTER 6:	QoS Routing In Ad-Hoc Wireless Networks	33
CHAPTER 7:	MPLS And Traffic Engineering	41
PART 2: MOBILIT	TY MANAGEMENT APPROACHES	
CHAPTER 8:	Introduction to Mobility Management	47
CHAPTER 9.	Nested Mobile Networks	53
CHAPTER 10:	Evaluation of NEMO Extensions	59
CHAPTER 11:	Handoff Process In Micromobility Protocols	65
CHAPTER 12:	Comparison Between Network Simulators	71
PART 3: WIRELE	SS TECHNOLOGY	
CHAPTER 13:	Introduction to Local Area Network (LAN) Communication Protocols	77
CHAPTER 14:	MANET routing protocols	85
CHAPTER 15:	VANET Applications	95
CHAPTER 16:	Vehicle To Vehicle Routing Protocols	101
CHAPTER 17:	Wi-Fi Mesh Network	111
CHAPTER 18:	Overview Of Wimax Mesh	117
CHAPTER 19:	Current Trends On WIMAX Using MIMO Technology	129
CHAPTER 20:	Self-Organized Femtocell Networks	141
CHAPTER 21:	Self-Organized Synchronization For Femtocell Network	155
CHAPTER 22:	Spectrum Management In Femtocell	169
CHAPTER 23:	Smart Grid Communication	179
CHAPTER 24:	UWB Overview	189
CHAPTER 25:	ZIGBEE Applications	197

CHAPTER 26:	Improvement Of Vertical Handover In GPRS/WIFI Seamless Convergence	205
CHAPTER 27:	The Application Of Sensor Network And Routing Protocols In Wireless Communication	215
CHAPTER 28:	A Study Of Channel Assignment Approach To Reduce Frequent Reassignment	227
CHAPTER 29:	Association Management Schemes For Wireless Mesh Network	231
CHAPTER 30:	Challenges In Multi-Radio Multi-Channel Wireless Mesh Network	237
CHAPTER 31:	Mobility Support in Diffserv and MPLS network	243
CHAPTER 32:	Mobility Management And Context Transfer	247
CHAPTER 33:	LTE -Advanced Overview	251
CHAPTER 34:	Time Synchronization Protocols And Approaches	261
CHAPTER 35:	MPLS Architectures	265

CHAPTER 19

CURRENT TRENDS ON WIMAX USING MIMO TECHNOLOGY

SOHELI FARHANA, OMER MAHMUD

Department of ECE, Kulliyyah of Engineering International Islamic University Malaysia

farhana_aub@yahoo.com, omer@iium.edu.my

19.1 INTRODUCTION

Wimax is an acronym of Worldwide Interoperability for Microwave Access [1]. Wimax provides up-to 70Mbps symmetric wireless broadband data transmission using variety of transmission modes, such as point-to-point links to full mobile cellular-type access. This technology is based on IEEE 802.16 standard which is also known as WirelessMAN can accommodate fixed, portable and mobile usage models. The term Wimax is actually been created by Wimax Forum on June 2001 to promote conformity and interoperability of the standard. The Wimax Forum describes Wimax as "a standards-based technology enabling the delivery of list mile wireless broadband access as an alternative to cable and DSL" [2]. The standard was developed to deliver non-line-of-sight (NLoS) connectivity between a subscriber station and base station with typical cell radius of 3-10km as in Fig 19.2. In the first stage the technology is said to deliver 40Mbps per channel and over 300Mbps with the next generation Wimax standards. Some applications such as notebook computer and PDA have already been equipped with this technology to deliver high speed mobile internet services anytime and anywhere. The survey of Wimax deployment is conducted with 24 innovative and advanced Wimax operators in November 2007. The survey result is shown in the following Fig 19.1.