
INTERFACING ELECTRONIC FOR MEASUREMENT, SIGNAL PROCESSING AND WIRELESS COMMUNICATION

Edited by

Sheroz Khan, International Islamic University Malaysia AHM Zahirul Alam, International Islamic University Malaysia Anis Nurashikin Nordin, International Islamic University Malaysia

INTERFACING ELECTRONIC FOR MEASUREMENT, SIGNAL PROCESSING AND WIRELESS COMMUNICATION

Edited by

Sheroz Khan, International Islamic University Malaysia
AHM Zahirul Alam, International Islamic University Malaysia
Anis Nurashikin Nordin, International Islamic University Malaysia

Published by: IIUM Press International Islamic University Malaysia

First Edition, 2011 ©IIUM Press, IIUM

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise, without any prior written permission of the publisher.

Perpustakaan Negara Malaysia

Cataloguing-in-Publication Data

Sheroz Khan, AHM Zahirul Alam & Anis Nurashikin Nordin: Interfacing Electronic for Measurement, Signal Processing and Wireless Communication.

ISBN: 978-967-418-171-0

Member of Majlis Penerbitan Ilmiah Malaysia – MAPIM (Malaysian Scholarly Publishing Council)

Printed By: **IIUM PRINTING SDN.BHD.**

No. 1, Jalan Industri Batu Caves 1/3
Taman Perindustrian Batu Caves
Batu Caves Centre Point
68100 Batu Caves
Selangor Darul Ehsan

Tel: +603-6188 1542 / 44 / 45 Fax: +603-6188 1543 EMAIL: iiumprinting@yahoo.com

CONTENTS

Chapter	Title	Page
1	INDUCTIVE SENSOR	1
	Atika Arshad, RumanaTasnim, Sheroz Khan, AHM Zahirul	
	Alam	
2	WIRELESS TRANSFER OF LOW-POWER TO IMPLANTED	8
	BIOMEDICAL DEVICES: INTRODUCTION AND 2-D COIL	
	PARAMETERS	
	Imran M. Khan, Sheroz Khan, Othman O. Khalifa	
3	WIRELESS TRANSFER OF POWER TO LOW-POWER	14
	IMPLANTED BIOMEDICAL DEVICES: 3-DIMENSIONAL	
	COIL DESIGN CONSIDERATIONS	
	Imran M. Khan, Sheroz Khan, Othman O. Khalifa	
4	WIRELESS TRANSFER OF LOW-POWER TO IMPLANTED	22
	BIOMEDICAL DEVICES: INDUCTIVE LINK DESIGN	
	Imran M. Khan, Aminullah Khan, Sheroz Khan, Othman O.	
	Khalifa	
5	WIRELESS TRANSFER OF LOW-POWER TO IMPLANTED	28
	BIOMEDICAL DEVICES: RECTIFIER DESIGN	
	Imran M. Khan, Sheroz Khan, Othman O. Khalifa	
6	DATA CONVERSION BASIC CONCEPTS	36
	Ma Li Ya, Sheroz Khan, Anis Nurashikin	
7	NYQUIST-RATE ANALOG-TO-DIGITAL CONVERTER	41
	Ma Li Ya, Sheroz Khan, Anis Nurashikin	
8	OVERSAMPLING ANALOG-TO-DIGITAL CONVERTER	47
	Ma Li Ya, Sheroz Khan, Anis Nurashikin	
9	SWITCHED-CAPACITOR INTEGRATOR DESIGN	53
	Ma Li Ya, Sheroz Khan, Anis Nurashikin	
10	CMOS OPERATIONAL AMPLIFIER DESIGN	60
	Ma Li Ya, Sheroz Khan, Anis Nurashikin	

11	DIGITAL-TO-ANALOG CONVERTER	68
	Ma Li Ya, Sheroz Khan, Anis Nurashikin	
12	CONVETERS RESULTS VERIFICATIONS	73
	Ma Li Ya, Sheroz Khan, Anis Nurashikin	
13	DEVELOPMENT OF WEARABLE REFLECTANCE PULSE	77
	OXIMETRY FOR TELEHEALTH MONITORING SYSTEM	
	Muhammad Arham, Syed Zulfauzi, Othman O. Khalifa	
14	DESIGN OF CAPACITIVE MEASURING SYSTEM FOR HIGH	83
	FREQUENCY BAND TRANSDUCER	
	Nurul Arfah binti Che Mustapha, AHM Zahirul Alam, Sheroz	
	Khan	
15	PRINCIPLE OF CAPACITANCE TO VOLTAGE CONVERTER	89
	Nurul Arfah binti Che Mustapha, AHM Zahirul Alam, Sheroz	
	Khan	
16	CMOS OPERATIONAL AMPLIFIER TESTING FOR	95
	CAPACITIVE TO VOLTAGE CONVERTER	
	Nurul Arfah binti Che Mustapha, AHM Zahirul Alam, Sheroz	
	Khan	
17	MATHEMATICAL MODEL FOR CONTACTLESS	102
	MEASUREMENT	
	Nurul Arfah binti Che Mustapha, AHM Zahirul Alam, Sheroz	
	Khan	
18	FREQUENCY RESPONSE OF A CONTACTLESS	107
	MEASUREMENT	
	Nurul Arfah binti Che Mustapha, AHM Zahirul Alam, Sheroz	
	Khan	
19	A MATHEMATICAL STUDY OF A THERMISTOR ASTABLE	113
	MULTIVIBRATOR IN A LINEARIZATION TECHNIQUE	
	Nurul Arfah binti Che Mustapha, AHM Zahirul Alam, Sheroz	
	Khan	

20	A STUDY OF LINEARIZATION TECHNIQUE USING A	117
	NONLINEAR THERMISTOR	
	Nurul Arfah binti Che Mustapha, AHM Zahirul Alam, Sheroz	
	Khan	
21	COGNITIVE RADIO VS INTELLIGENT ANTENNA	123
	Siti Rabani Mat Nawi, Nurul Farhah Toha, Khaizuran Abdullah,	
	M. Rafiqul Islam, Sheroz Khan	
22	UWB PULSE GENERATION AND MODULATION CIRCUITS	134
	FOR BIOMEDICAL IMPLANTS	
	Mokhaled M., Mohammed, Sheroz Khan, Jalel Chebil, Khaled	
	A. S. Al-Khateeb, Imran Moez Khan	
23	UWB COMMUNICATIONS FOR BIOMEDICAL IMPLANTS	141
	Mokhaled M. Mohammed, Sheroz Khan, Jalel Chebil, Khalid A.	
	S. Al-Khateeb, Imran Moez Khan	
24	UWB PULSE GENERATION FOR BIOMEDICAL IMPLANTS	145
	Mokhaled M., Mohammed, Sheroz Khan, Jalel Chebil, Khaled	
	A. S. Al-Khateeb, Imran Moez Khan	
25	ULTRA-WIDE BAND TECHNOLOGY	149
	Mokhaled M., Mohammed, Sheroz Khan, Jalel Chebil, Khaled	
	A. S. Al-Khateeb, Imran Moez Khan	
26	MVL ADC DESIGN AND SIMULATION	153
	Soheli Farhana, AHM Zahirul Alam, Sheroz Khan	
27	MVL DESIGN AND CURRENT MODE CIRCUIT ELEMENTS	159
	Soheli Farhana, AHM Zahirul Alam, Sheroz Khan	
28	NOISE MODULATED CRYPTOGRAPHIC GENERATION FOR	164
	USE IN UWB WIRELESS COMMUNICATION	
	Siti HazwaniYaacob, Sigit Puspito Wigati Jarot, Sheroz Khan	
29	UWB PULSE GENERATION AND SHAPING: ANALYSIS	173
	AND SIMULATION RESULTS	
	Zeeshan Shahid, Sheroz Khan, AHM Zahirul Alam	

30	SIMULATIONS OF RESISTANCE VARIATIONS TO PULSE	177
	GENERATOR CIRCUITS	
	Zeeshan Shahid, Sheroz Khan, AHM Zahirul Alam	
31	PULSE OXIMETRY DESIGN USING ARDUINO BOARD	184
	Muhammad Arham, Syed Zulfauzi and Othman O. Khalifa	

Chapter 9

SWITCHED-CAPACITOR INTEGRATOR DESIGN

Ma Li Ya, Sheroz Khan, Anis Nurashikin

The integrator is the largest and most important circuit block in the oversampling ADCs. Switch-capacitor integrator (SCI) perhaps is the most popular approach for realizing analog signal processing using CMOS technology. It accumulates the major quantization error from the quantizer and forces their average value to be zero (Boser & Wooley, 1988). It is realized by using of some basic building blocks such as op amps, capacitors, switches, as well as non-overlapping clocks. Brief descriptions of each blocks and the integrator's working principle are given in this chapter, expect op amps explained in following section.

9.1. TOPOLOGY CHOOSING

A popular solution for integrator design which is used in ADC is that of the switched-capacitor integrator. The basic building block of most SCI circuits is the stray insensitive integrator as shown in Fig. 9.1, which contains an op amp, two capacitors (C_1 and C_2), four MOSFET (the metal-oxide-semiconductor field-effect transistor) switches, and two non-overlapping clocks.

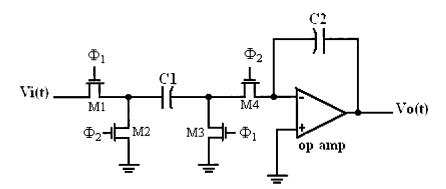


Fig. 9.1: Schematic of switched-capacitor integrator (SIC) (Mohan, et al., 2008).

There are two reasons for choosing the non-inverting SCI in oversampling ADCs here. First, until the early 1970s, analog signal-processing circuits still used continuous-time circuits consisting of resistors, capacitors, and op amp (Allen, et al., 2002). However, the absolute tolerances of resistors and capacitors available in standard CMOS technologies are not good enough (which can vary by as much as 20 percent) compared to SCI (the accuracy is on the order of 0.1 percent). The parasitic-insensitive integrator is a