QoS AND MOBILE TECHNOLOGIES

EDITORS:

AISHA-HASSAN ABDALLA HASHIM

OMER MAHMOUD

RASHEED SAEED

DEPARTMENT OF ELECTRICAL AND COMPUTER ENGINEERING INTERNATIONAL ISLAMIC UNIVERSITY MALAYSIA

Published by: HUM Press International Islamic University Malaysia

First Edition, 2011 ©IIUM Press, IIUM

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise, without any prior written permission of the publisher.

Perpustakaan Negara Malaysia

Cataloguing-in-Publication Data

ISBN: 978-967-418-142-0

Member of Majlis Penerbitan Ilmiah Malaysia - MAPIM (Malaysian Scholarly Publishing Council)

Printed by : HIUM PRINTING SDN.BHD.

No. 1, Jalan Industri Batu Caves 1/3
Taman Perindustrian Batu Caves
Batu Caves Centre Point
68100 Batu Caves
Selangor Darul Ehsan

Tel: +603-6188 1542 / 44 / 45 Fax +603-6188 1543 EMAIL: iiumprinting(a yahoo.com

TABLE OF CONTENTS

	TITLE	No
PART 1:QoS APPF	ROACHES	
CHAPTER 1:	Introduction to QoS Approaches	2
CHAPTER 2:	Internet Quality Of Service Architectures	1 1
CHAPTER 3:	Integrated Services	17
CHAPTER 4:	Differentiated Services	21
CHAPTER 5:	Quality Of Service (QoS) Ad-Hoc On-Demand Distance Vector (AODV)	27
CHAPTER 6:	QoS Routing In Ad-Hoc Wireless Networks	33
CHAPTER 7:	MPLS And Traffic Engineering	41
PART 2: MOBILIT	TY MANAGEMENT APPROACHES	
CHAPTER 8:	Introduction to Mobility Management	47
CHAPTER 9.	Nested Mobile Networks	53
CHAPTER 10:	Evaluation of NEMO Extensions	59
CHAPTER 11:	Handoff Process In Micromobility Protocols	65
CHAPTER 12:	Comparison Between Network Simulators	71
PART 3: WIRELE	SS TECHNOLOGY	
CHAPTER 13:	Introduction to Local Area Network (LAN) Communication Protocols	77
CHAPTER 14:	MANET routing protocols	85
CHAPTER 15:	VANET Applications	95
CHAPTER 16:	Vehicle To Vehicle Routing Protocols	101
CHAPTER 17:	Wi-Fi Mesh Network	111
CHAPTER 18:	Overview Of Wimax Mesh	117
CHAPTER 19:	Current Trends On WIMAX Using MIMO Technology	129
CHAPTER 20:	Self-Organized Femtocell Networks	141
CHAPTER 21:	Self-Organized Synchronization For Femtocell Network	155
CHAPTER 22:	Spectrum Management In Femtocell	169
CHAPTER 23:	Smart Grid Communication	179
CHAPTER 24:	UWB Overview	189
CHAPTER 25:	ZIGBEE Applications	197

CHAPTER 26:	Improvement Of Vertical Handover In GPRS/WIFI Seamless Convergence	205
CHAPTER 27:	The Application Of Sensor Network And Routing Protocols In Wireless Communication	215
CHAPTER 28:	A Study Of Channel Assignment Approach To Reduce Frequent Reassignment	227
CHAPTER 29:	Association Management Schemes For Wireless Mesh Network	231
CHAPTER 30:	Challenges In Multi-Radio Multi-Channel Wireless Mesh Network	237
CHAPTER 31:	Mobility Support in Diffserv and MPLS network	243
CHAPTER 32:	Mobility Management And Context Transfer	247
CHAPTER 33:	LTE -Advanced Overview	251
CHAPTER 34:	Time Synchronization Protocols And Approaches	261
CHAPTER 35:	MPLS Architectures	265

CHAPTER 11

HANDOFF PROCESS IN MICROMOBILITY PROTOCOLS

SHAYMA SENAN, AKRAM M. ZEKI, AISHA HASSAN ABDALLA HASHIM

ECE Dept, Fac. of Eng., International Islamic Univ. Malaysia (IIUM), Jalan Gombak, 53100 Kuala Lumpur, Malaysia. shay_sinan@yahoo.co.uk

11.1 INTRODUCTION

The aim of micro mobility protocols is to reduce signaling load and handoff latency for local domain handoffs. Depending on the way they handle the mobile node in the local domain, micro mobility protocols are divided into two types [1]: Tunnel-Based Protocols and Per Host forwarding schemes.

11.2 TUNNEL-BASED PROTOCOLS

In these protocols, normal IP routing will be used to transmit packets to the mobile node. To allow this a few specialized nodes (mobility agents) store the information related to the mobile node's current access router. Packets are tunneled from the mobility agent to the mobile node. Such protocols include Hierarchical Mobile IPv6, Mobile IPv6 Regional Registrations and Fast Handovers for Mobile IPv6 [1].

11.2.1 Hierarchical Mobile IPv6 (HMIPv6)

Hierarchical Mobile IPv6 [2] introduces a new conceptual entity called Mobility Anchor Point (MAP). MAP acts as the proxy home agent for mobile nodes within the local domain. Mobility inside the local domain (MAP domain) is handled by HMIPv6 (using MAP) and mobility between MAP domains is handled by MIPv6.

When a mobile node enters a new MAP domain, it obtains two care of addresses: regional care of address (RCoA) and on-link care of address (LCoA). The RCoA is bound to a MAP domain and is constant for the particular MAP domain. Whenever the mobile node changes its current location within the MAP domain, it acquires a new LCoA. The mobile node uses RCoA to inform its Home Agent and active CNs about its current location and uses LCoA to get an address within the current MAP domain. Whenever the mobile node moves within the current MAP domain, it needs to register with the current MAP. Because the RCoA of a mobile node does not change with its movement in the MAP domain, there is no need to inform its Home Agent and CNs.