

# Topics in Coding, Cryptography and Information Security

#### **Editors:**

Mohammad Umar Siddiqi Sigit Puspito Wigati Jarot Othman Omran Khalifa





# Topics in Coding, Cryptography and Information Security

### **Editors:**

Mohammad Umar Siddiqi Sigit Puspito Wigati Jarot Othman Omran Khalifa



#### Published by: IIUM Press International Islamic University Malaysia

#### First Edition, 2011 ©HUM Press, HUM

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise, without any prior written permission of the publisher.

Perpustakaan Negara Malaysia

Cataloguing-in-Publication Data

Mohammad Umar Siddiqi, Sigit Puspito Wigati Jarot and Othman Omran Khalifa: Topics in Coding, Cryptography and Information Security

ISBN: 978-967-418-169-7

Member of Majlis Penerbitan Ilmiah Malaysia – MAPIM (Malaysian Scholarly Publishing Council)

Printed by:

HUM PRINTING SDN. BHD.

No. 1, Jalan Industri Batu Caves 1/3 Taman Perindustrian Batu Caves Batu Caves Centre Point 68100 Batu Caves Selangor Darul Ehsan

# **Topics in Coding, Cryptography and Information Security**

#### **Contents**

| List                    | of Contributors                                                                                                                                                      | ii        |  |  |
|-------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|--|--|
| Edi                     | torial Introduction                                                                                                                                                  | vi        |  |  |
| PA                      | RT I: SOURCE CODING                                                                                                                                                  |           |  |  |
| 1.                      | Performance Analysis of Image Data Compression using Zero-Tree Wav<br>Transform<br>Othman O. Khalifa, Emir Tabakovic. Zlatko Memisevic and Aisha-<br>Hassan Abdullah | elet<br>2 |  |  |
| 2.                      | Scalable and Robust Streaming Video System Challenges Othman O. Khalifa, Sinzobakwira Issa and Mohammad Umar Siddiqi                                                 | 12        |  |  |
| PART II: CHANNEL CODING |                                                                                                                                                                      |           |  |  |
| 3.                      | Golay Codec: An Overview Othman O. Khalifa                                                                                                                           | 23        |  |  |
| 4.                      | Reed-Muller Codes: An Overview Othman O. Khalifa                                                                                                                     | 35        |  |  |
| 5.                      | Viterbi Decoder: A Review and Implementation<br>Noorainani Ainina Bt. Md Noor Albakri and Othman O. Khalifa                                                          | 42        |  |  |

| 6.  | Zigzag Codes: High Rate Low Complexity Iterative Codes Sigit P.W. Jarot                                                    | 53           |
|-----|----------------------------------------------------------------------------------------------------------------------------|--------------|
| 7.  | Convolutional Coded OFDM in Broadband Mobile Communication Sigit P.W. Jarot                                                | 66           |
| 8.  | Channel Coding Techniques in Mobile Communication Systems Othman O. Khalifa and Rashid A. Saeed                            | 77           |
| 9.  | Channel Coding in CDMA 2000<br>Othman O. Khalifa                                                                           | 85           |
| 10. | Channel Coding in Mobile WiMAX Rashid A. Saeed and Othman O. Khalifa                                                       | 91           |
| 11. | Turbo Codes: An Error Correction Technique for 4G Mosharrof Hussain Masud and Mohammad Umar Siddiqi                        | 99           |
| 12. | Combined Source Channel Decoding for Image Transmission over Channels  Jalel Chebil                                        | Noisy<br>108 |
| PA. | RT III: CRYPTOGRAPHY AND INFORMATION SECURITY                                                                              |              |
| 13. | Cryptographic Boolean Functions: Transform Domain Perspective Hashum Mohamed Rafiq and Mohammad Umar Siddiqi               | 120          |
| 14. | Implementation of RSA Algorithm  Hafizul Azizi Rasid, Mohd Azmi Jabar and Othman O. Khalifa                                | 141          |
| 15. | GSM Security: Problems and Solutions Rashid A. Saeed and Othman O. Khalifa                                                 | 152          |
| 16. | Recent Approaches to Wireless Physical Layer Security M. Tahir, Sigit P.W. Jarot and M.U. Siddiqi                          | 161          |
| 17. | Securing OFDM-based Systems from the Physical Layer Sigit P.W. Jarot                                                       | 169          |
| 18. | Simulation of Artificial Noise based Physical Layer Security<br>Muhammad Izzat bin Zurkiple and Sigit Puspito Wigati Jarot | 174          |

| 19. | Secure IPv6 Address Generation Nashrul Hakiem, Mohammad Umar Siddiqi, and Sigit Puspito Wigati Jarot         | 183 |
|-----|--------------------------------------------------------------------------------------------------------------|-----|
| 20. | Video Streaming and Encrypting Algorithms  Mohammed Abumuala, Othman O. Khalifa, and Aisha-Hassan A.  Hashim | 190 |
| 21. | Wireless IP Camera based on Motion Detection Surveillance System<br>Zeeshan Shahid and Khaizuran Abdullah    | 217 |
| 22. | Design of Mobile Phone Jammer<br>Fauzun Abdullah Asuhaimi, Nur Fatin Mohd Zakki, and Khaizuran<br>Abdullah   | 223 |

#### Index

### Chapter 15

## **GSM Security: Problems and Solutions**

#### Rashid A. Saeed and Othman O. Khalifa

#### 15.1. Introduction

The wireless technology is progressing very fast and become one of the driving forces of the digital explosion and dividend. It becomes one of the basic facilities in our life, which everyone must have. With a mobile handset, anyone can be connected any where at any time. Every day, millions of people are making phone calls, sending messages, etc by pressing a few buttons. Global System for Mobile Communications (GSM) is the most widely used cellular standard, mostly in Europe and Asia and Limited coverage and support in USA. GSM was designed to grow and meet the needs of new technologies, GSM is currently composed of EDGE, 3GSM, and GPSR. Each member of the family is designed to solve a particular need. EDGE is an upper level component used for advanced mobile services such as downloading music clips, video clips, and multimedia messages. GPSR is designed for "always-on" systems that are needed for web-browsing. Not many people known about how this communications been happening and even less is known about the security measures and protection behind the systems. The aim of security for mobile systems is to make the system as secure as the publie network and to prevent communication cloning. The use of air interface at the transmission media allows a number of potential threats from cavesdropping. Usually the only air interface part of the GSM network is encrypted. The signal is decrypted at the base station (BS) and then transmitted in clear text across the network. The encryption on the air part was broken in 1998. In this chapter we discuss the GSM security problems and challenges.

#### 15.2. GSM architecture

Global System for Mobile Communications GSM is the world's largest mobile phone network, which is covering all Europe, most of Asia and all Africa. It is used by over two billion people across more than 212 countries. GSM was designed in 1982 and became live in 1991 by 3GPP [1]. The 3rd Generation Partnership Project (3GPP) is collaboration between groups of telecommunications associations, known as the organizational partners. A typical GSM network contains Base Stations, a Base Station Concentrator, various databases (MSC, VLR, HLR, AuC, etc), switches and terminals. Various different signal protocols (including SS7) are used to transfer the information between the key elements of the network. The air interface works on four main frequency bands. The range of the wireless