Topics in Coding, Cryptography and Information Security #### **Editors:** Mohammad Umar Siddiqi Sigit Puspito Wigati Jarot Othman Omran Khalifa # Topics in Coding, Cryptography and Information Security #### **Editors:** Mohammad Umar Siddiqi Sigit Puspito Wigati Jarot Othman Omran Khalifa #### Published by: IIUM Press International Islamic University Malaysia #### First Edition, 2011 ©HUM Press, HUM All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise, without any prior written permission of the publisher. Perpustakaan Negara Malaysia Cataloguing-in-Publication Data Mohammad Umar Siddiqi, Sigit Puspito Wigati Jarot and Othman Omran Khalifa: Topics in Coding, Cryptography and Information Security ISBN: 978-967-418-169-7 Member of Majlis Penerbitan Ilmiah Malaysia – MAPIM (Malaysian Scholarly Publishing Council) Printed by: HUM PRINTING SDN. BHD. No. 1, Jalan Industri Batu Caves 1/3 Taman Perindustrian Batu Caves Batu Caves Centre Point 68100 Batu Caves Selangor Darul Ehsan ## **Topics in Coding, Cryptography and Information Security** #### **Contents** | List | of Contributors | ii | | | |-------------------------|--|-----------|--|--| | Edi | torial Introduction | vi | | | | PA | RT I: SOURCE CODING | | | | | 1. | Performance Analysis of Image Data Compression using Zero-Tree Wav
Transform
Othman O. Khalifa, Emir Tabakovic. Zlatko Memisevic and Aisha-
Hassan Abdullah | elet
2 | | | | 2. | Scalable and Robust Streaming Video System Challenges Othman O. Khalifa, Sinzobakwira Issa and Mohammad Umar Siddiqi | 12 | | | | PART II: CHANNEL CODING | | | | | | 3. | Golay Codec: An Overview Othman O. Khalifa | 23 | | | | 4. | Reed-Muller Codes: An Overview Othman O. Khalifa | 35 | | | | 5. | Viterbi Decoder: A Review and Implementation
Noorainani Ainina Bt. Md Noor Albakri and Othman O. Khalifa | 42 | | | | 6. | Zigzag Codes: High Rate Low Complexity Iterative Codes Sigit P.W. Jarot | 53 | |-----|--|--------------| | 7. | Convolutional Coded OFDM in Broadband Mobile Communication Sigit P.W. Jarot | 66 | | 8. | Channel Coding Techniques in Mobile Communication Systems Othman O. Khalifa and Rashid A. Saeed | 77 | | 9. | Channel Coding in CDMA 2000
Othman O. Khalifa | 85 | | 10. | Channel Coding in Mobile WiMAX Rashid A. Saeed and Othman O. Khalifa | 91 | | 11. | Turbo Codes: An Error Correction Technique for 4G Mosharrof Hussain Masud and Mohammad Umar Siddiqi | 99 | | 12. | Combined Source Channel Decoding for Image Transmission over Channels Jalel Chebil | Noisy
108 | | PA. | RT III: CRYPTOGRAPHY AND INFORMATION SECURITY | | | 13. | Cryptographic Boolean Functions: Transform Domain Perspective Hashum Mohamed Rafiq and Mohammad Umar Siddiqi | 120 | | 14. | Implementation of RSA Algorithm Hafizul Azizi Rasid, Mohd Azmi Jabar and Othman O. Khalifa | 141 | | 15. | GSM Security: Problems and Solutions Rashid A. Saeed and Othman O. Khalifa | 152 | | 16. | Recent Approaches to Wireless Physical Layer Security M. Tahir, Sigit P.W. Jarot and M.U. Siddiqi | 161 | | 17. | Securing OFDM-based Systems from the Physical Layer Sigit P.W. Jarot | 169 | | 18. | Simulation of Artificial Noise based Physical Layer Security
Muhammad Izzat bin Zurkiple and Sigit Puspito Wigati Jarot | 174 | | 19. | Secure IPv6 Address Generation Nashrul Hakiem, Mohammad Umar Siddiqi, and Sigit Puspito Wigati Jarot | 183 | |-----|--|-----| | 20. | Video Streaming and Encrypting Algorithms Mohammed Abumuala, Othman O. Khalifa, and Aisha-Hassan A. Hashim | 190 | | 21. | Wireless IP Camera based on Motion Detection Surveillance System
Zeeshan Shahid and Khaizuran Abdullah | 217 | | 22. | Design of Mobile Phone Jammer
Fauzun Abdullah Asuhaimi, Nur Fatin Mohd Zakki, and Khaizuran
Abdullah | 223 | #### Index ### Chapter 13 ### Cryptographic Boolean Functions: Transform Domain Perspective #### Hashum Mohamed Rafiq and Mohammad Umar Siddiqi #### 13.1. Introduction This chapter examines the main properties of cryptographic Boolean functions and looks at various representation methods that have been employed to study and utilize them so far. A sequel to this is to address an alternative approach that can be used as an alternative tool in analyzing and manipulating such functions. Boolean functions have been of great interest in many fields of engineering and science, especially in cryptography [1]. Most modern conventional cryptographic systems are based on the notion of product ciphers [2] which represent a class of cryptosystems that iterate a composite operation to map plaintext to cipher-text. Each such iteration is known as a round of the cipher and consists of a combination of transposition and substitution operation. The combination of such operations can produce a cryptographically strong nonlinear mapping when applied a sufficient number of times [3]. Each round consists of an application of a transposition and a substitution derived from a set of fixed auxiliary tables (S-boxes), guided by the sub-key for that round. Given that transposition is a linear operation, then the substitution operation is the only source of nonlinearity in the cipher and therefore the security [4]. As the S-boxes provide the security in these cryptosystems, their design is of critical importance. However, since 1985, the research attention shifted to Boolean functions, which can be viewed as component parts of an S-box, and to define and analyzing their properties [4]. The initial design properties or criteria for the Boolean functions include; balance, nonlinearity [5], non-degeneracy/completeness [6], correlation immunity [7], satisfy the strict avalanche criterion (SAC) [8], or be bent [9]. These properties may be collectively referred to as nonlinearity criteria [5, 10] and can be extended in several natural ways. For example, functions may be chosen so that they achieve a maximum distance from all functions that are affine [5] or have linear structures [11, 12] which are considered cryptographically weak. Also the nonlinearity criterion can be considered to be robust if it is invariant under certain simple mappings such as affine transformation. In [5], it was shown that the distance to the set of linear functions, and the nonlinear order of a function [13] are both invariant under non-singular linear transformation. A property P, such as nonlinearity, in a function may be considered stronger in the function if P is still retained when certain subsets of the input bits are held