ELECTRICAL AUTOMATION SYSTEMS TOWARDS INTELLIGENT AND ENERGY EFFICIENCY APPLICATIONS

Musse Mohamud Ahmed

IIUM PRESS

INTERNATIONAL ISLAMIC UNIVERSITY MALAYSIA

ELECTRICAL AUTOMATION SYSTEMS TOWARDS

INTELLIGENT AND ENERGY EFFICIENCY APPLICATIONS

Musse Mohamud Ahmed

Electrical and Computer Engineering Department, The Faculty of Engineering, IlUM

Published by: IIUM Press International Islamic University Malaysia

First Edition, 2011 © HUM Press, HUM

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise, without any prior written permission of the publisher.

Perpustakaan Negara Malaysia

Cataloguing-in-Publication Data

ISBN: 978-967-418-170-3

Member of Majlis Penerbitan Ilmiah Malaysia – MAPIM (Malaysian Scholarly Publishing Council)

Printed by: **HUM PRINTING SDN.BHD.**

No. 1, Jalan Industri Batu Caves 1/3
Taman Perindustrian Batu Caves
Batu Caves Centre Point
68100 Batu Caves
Selangor Darul Ehsan

Tel: +603-6188 1542 / 44 / 45 Fax: +603-6188 1543 EMAIL: iiumprinting@yahoo.com

CONTENTS OF THE BOOK

<u>Chapter</u>	<u>Title & Author</u> <u>P</u>	age No
PART I: ELEC	CTRICAL DISTRIBUTION AUTOMATION SYSTEMS	
CHAPTER 1:	ELECTRICAL DISTRIBUTION SYSTEM	2
CHAPTER 2:	ELECTRIC DISTRIBUTION EQUIPMENT FAULTS	6
CHAPTER 3:	FAULTS FROM TRADITIONAL TO AUTOMATION TECHNIQUES Musse Mohamud Ahmed and Soo Wai Lian	15
CHAPTER 4:	SCADA SYSTEM FOR ELECTRICAL DISTRIBUTION SYSTEM	22
CHAPTER 5:	SCADA SOFTWARE DEVELOPMENT—INDUSOFT CASE STUDY Musse Mohamud Ahmed and Soo Wai Lian	25
CHAPTER 6:	PROTECTION SYSTEM FOR ELECTRICAL DISTRIBUTION Musse Mohamud Ahmed and Soo Wai Lian	37
CHAPTER 7:	RELAYS Musse Mohamud Λhmed and Soo Wai Lian	43
CHAPTER 8:	REMOTE TERMINAL UNIT (RTU)	49
CHAPTER 9:	INTELLIGENT AUTOMATION SYSTEM: AUTOMATION HARDWARE	60
	DEVELOPMENT Musse Mohamud Ahmed and Soo Wai Lian	
CHAPTER 10:	SCHEMATIC DIAGRAMS OF AUTOMATED SUBSTATION PANELS Musse Mohamud Ahmed and Soo Wai Lian	69
CHAPTER 11:	SOFTWARE AUTOMATION DEVELOPMENT	78
CHAPTER 12:	DEVELOPMENT OF MODBUS TCP/IP SETTING	87
CHAPTER 13:	POWER LINE CARRIER COMMUNICATION SYSTEM Musse Mohamud Ahmed and Soo Wai Lian	96
CHAPTER 14:	WIRELESS COMMUNICATIONS FOR ELECTRIC SYSTEM AUTOMATION Othman O. Khalifa and Musse Mohamud Ahmed	103
CHAPTER 15:	DEVELOPMENT OF AUTOMATION SYSTEM FOR SMALL/MEDIUM	

	SCALE BIOMASS BASED RENEWABLE POWER PLANTS 1 Musse Mohamud Ahmed and Sheroz Khan	08
Chapter	Title & Author Page 1	<u>No</u>
PART II: INTI	ELLIGENT SYSTEMS USING COMMUNICATION AND ELECTRONICS	
SYST	TEMS	
CHAPTER 16:	MODELING OF LOW VOLTAGE POWER LINE FOR DATA COMMUNICATION: SIMULATION RESULTS	18
CHAPTER 17:	LOW VOLTAGE POWERLINE ANALYSIS AND SIMULATION RESULTS	25
CHAPTER 18;	ZIGBEE APPLICATIONS TO WIRELESS COMMUNICATION SYSTEMS	33
CHAPTER 19:		38
CHAPTER 20:	PIC 16F877A FOR HYBRID VEHICLE CONTROLLER	44
CHAPTER 21:	FPGA-BASED HARDWARE MODELING OF LIGHT RAIL TRANSIT FARE CARD CONTROLLER	55
CHAPTER 22:	DEVELOPMENT OF A METHOD TO MAINTAIN TEMPERATURE AND HUMIDITY IN AN OPEN COMPOUND RESTAURANT	66
PART III: ENE FAN MOTORS	ERGY EFFICIENCY APPLICATIONS TO ELECTRIC MOTORS AND	
CHAPTER 23:	ELECTRIC MOTOR	76
CHAPTER 24:	LOSSES OF ELECTRIC MOTORS1 Musse Mohamud Ahmed, Noor Zatil Amali Bt Muhammad Hanapi and Che Fazilah Bt Fathil	80
CHAPTER 25:	ELECTRIC MOTOR EFFICIENCY	85

	and Che Fazilah Bt Fathil	
CHAPTER 26:	ENERGY EFFICIENCY IMPLEMENTATION OF PERMANENT MAGNET SYNCHRONOUS MOTOR	191
<u>Chapter</u>	Title & Author	Page No
CHAPTER 27:	ENERGY CALCULATIONS	195
CHAPTER 28:	MODELING, RESULT AND ANALYSIS	203
CHAPTER 29:	AIR BLOWING EQUIPMENT Musse Mohamud Ahmed, Rafizah Rahmatullah and Syarifah Nur Zati Abdul Rashid	210
CHAPTER 30:	ENERGY USAGE IN MALAYSIA	214
CHAPTER 31:	FAN MOTOR EFFICIENCY REQUIREMENT Musse Mohamud Ahmed, Rafizah Rahmatullah and Syarifah Nur Zati Abdul Rashid	217
CHAPTER 32:	APPLICATION OF FAN MOTOR ENEGY EFFICIENCY Musse Mohamud Ahmed, Rafizah Rahmatullah and Syarifah Nur Zati Abdul Rashid	220
CHAPTER 33:	FAN EFFICIENCY GRADE (FEG) DEVELOPMENT STAGES	223
CHAPTER 34:	FEG AND FMEG PRACTICAL CONSIDERATIONS – FAN SELECTIONS GUIDE Musse Mohamud Ahmed, Rafizah Rahmatullah and Syarifah Nur Zati Abdul Rashid	227
CHAPTER 35:	RESULTS AND DISCUSSIONS Musse Mohamud Ahmed, Rafizah Rahmatullah and Syarifah Nur Zati Abdul Rashid	232

CHAPTER 25

ELECTRIC MOTOR EFFICIENCY

Musse Mohamud Ahmed, Noor Zatil Amali Bt Muhammad Hanapi and Che Fazilah Bt Fathil

Department of Electrical and Computer Engineering, Faculty of Engineering International Islamic University Malaysia

This chapter presents introduction to energy efficiency motors and electric efficiency of the electrical motors.

25.1 Introduction

With projecting problems of environment protection and energy shortage, people pay more attention on energy saving. It is very important to study energy saving of induction motors as the motor is the main equipment of consuming energy in the current industries. The ever-increasing imbalance between the demand and supply of energy has focused our attention towards energy conservation in the development of electrical motors operating performance and design of operating parameters. Numerous of attempts have been made to achieve this either by harnessing energy from renewable sources or by improving the operating efficiency of devices used in generation, transmission and utilization of electric energy. Induction motors are considered to be the main workhorse and are used in very large numbers in a variety of applications which include sectors like office, home, farm and industry. Any significant improvement in the operating efficiency of induction motor will, therefore help our efforts in energy conservation. This can be achieved by taking resource to design optimization techniques. Induction motors are the main energy consuming devices in industries contributing to more than 80% of electromechanical energy conservation.

The optimal design of energy efficient induction motor is therefore the need of the day. In the past, the design of induction motor has been attempted for achieving better performance characteristics and/or reducing the cost. These were mainly trial and error based which were solely attributed by professional experiences. Digital computer has made it possible to use well-known optimization techniques in the design of electric machines. There are two technical approaches for energy saving of the motor. One is from the motor itself to improve structural design, and new material and so on. Another is from the running condition of the motor by controlling the supply voltage and frequency according to the load torque and speed.

Pump, fan and compressor drive motors, that operate a large percentage of the time necessitate highly efficient and reliable service. It has been accepted that efficiency improvements beyond those currently achieved by high efficiency induction motors will be difficult. It can be obtained only at an ever-increasing level of effort. In other words, the rate of return will decrease as further loss reductions are attempted.