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Compression
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Abstract: In this paper, image compression algorithms using scalar and vector quantisation are proposed. An analysis of 
wavelet coefficients encoding is explained. Wavelet capability of energy compaction is shown. Also, wavelet vector 
quantisation and multiresolution codebook generation is discussed. General description of the proposed image compression 
algorithm with its feature is presented. In addition, simulation results and comparison with other coders is shown.
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1. Introduction
Wavelet image coding has been an exciting and fertile 
area of research in the image processing community in 
recent years particularly in relation to image 
compression. It does not only provide a good 
compression result, but it is also suitable for 
progressive transmissions and provides a multi 
resolution capability. However, applying the wavelet 
transform on images for compression alone does not 
reduce the amount of data to be compressed, since it 
may remove some of the redundancy and decorrelate 
the neighbour pixels. A common way to reduce the 
number of bits required for compression is to quantise 
the resulting coefficients from the transformation. The 
introduction of wavelets in the mid eighties has raised 
significant applications, which is the wavelet based 
image compression. These compression systems, 
preceded by a wavelet transform with further 
quantization of the wavelet coefficients followed by an 
entropy coder have proven to be a successful 
application in the field of image and video 
compression. In 1993, Shapiro introduced a new 
quantisation scheme called Embedded Zerotree 
Wavelet (EZW), where progressiveness was achieved 
without overhead information. This scheme is 
particularly well suited for important applications e. g.,
client/server transmission where the client can choose 
the actual compression ratio as well as compression of 
images with a special target rate. The refinement of 
this algorithm is Set Partitioning in Hierarchical Trees 
algorithm (SPIHT) by Said and Pearlman [16]. 
However, since the underlying model, the zerotrees are 
algorithmically complex to handle, other authors 
introduced run-length based quantization schemes. 
Villasenor et al [20] algorithm allows faster execution 
times but suffer from inferior quality of the 
reconstructed images (measured in PSNR). Lewis and 

Knowles [13] suggested a new algorithm which uses 
the non-linear spatial correlation inherent in a 
transformed image to compress it at below its entropy. 
It is the extension of the following authors [19, 21].

2. Wavelet Coefficients Encoding
The wavelet transform decomposes the input image 
into low-frequency coefficients or coarse band and a 
number of high frequency bands or detail signals 
according to the level of decomposition. These results 
can be considered as low-pass and high-pass versions 
of the original image. The low band pass has a flat 
distribution and its approximation of the distribution of 
luminance and chrominance values are similar to those 
of the original image as shown in Figure 1 for one 
level multiresolution. The high band coefficients have 
probability distribution that is similar to laplacian 
characters with mean zero as shown in Figure 2. 
Moreover, the wavelet transform generates coefficients 
that are much less correlated than the original images 
and are easier to code. Also, it can be observed that all 
the same corresponding position bands look like scaled 
versions of each other, vertical to vertical lower of 
higher band and horizontal to horizontal and the same 
diagonal to diagonal. However, it is noted that the bulk 
energy in the high bands is concentrated more or less 
in the vicinity of areas that correspond to edge activity 
in the original image. This recommends that areas, 
which contain most of the information, must be 
encoded more precisely than the rest. Therefore, for 
image compression proposes a wavelet transform must 
be combined with another technique for coefficient 
coding. In fact the compression of wavelet coefficients 
is based on the assumption that details at high 
resolution are less visible to human eye and therefore 
can be reconstructed with low processing. 
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Figure 1. Low band wavelet coefficient for one level 
decomposition.
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Figure 2. Vertical band distribution of test image cameraman in 
first level wavelet decomposition.

A two dimensional n-stage wavelet transform can 
be represented as in Figure 3, where Li,Vi, Hi, and Di (i 
= 1,…….l) are, respectively, the low band, vertical, 
horizontal and diagonal bands generated after three-
stage transformation. Figure 4 shows a 3-stage wavelet 
transform of cameraman test image.

Figure 3. Wavelet multiresolution image decomposition (3-levels).

The image coding schemes assumes that the gray 
value of image to be coded is already present in a 

digital form (8 bit/pixel). In general, the depth of the 
splitting tree ranges from 3 to 5 levels, the reason is 
that if a low pass subband contains frequency 
components that are all equally important in subjective 
visual quality, then further decomposition is not 
efficient. The decomposition into subbands is assumed 
to correspond to important and less important 
information that is used by the Human Visual System 
(HVS). This means that some of the subbands have to 
be transmitted more accurately than others.

Figure 4. Wavelet transform for cameraman test image three-
levels.

Wavelet Transform combined with Scalar 
Quantisation (SQ) and Vector Quantisation (VQ) have 
led to numerous schemes for image data compression 
[2, 4, 5, 6, 9, 13] using a multiresolution and pyramid 
algorithm [10, 12, 14, 15] the wavelet transform 
organises the coefficients to enable effective SQ and 
VQ encoding. Both approaches have their own 
advantages and disadvantages. It is known that the 
high frequency coefficients can be modelled fairly. 
Scalar quantisation takes advantage of this fact for the 
design of their quantisation table. On the other hand, it 
is known that sharp edges are characterised by 
frequency components of all resolution. Hence, there 
will be some residual correlation between coefficients 
of different scales. Vector quantisation exploits the 
correlation among coefficients of different scales.

A summary of PSNR performances of some of the 
methods described is presented in Table 1 for grey 
level test image Lena size 256x256 and 512x512. In 
[1], the low frequency band is scalar quantised and 
coded by PCM, while the remaining bands are coded 
using VQ. The codebook is designed separately for 
each orientation. Since the bands in each orientation 
have strong structural characteristics (either horizontal, 
vertical or diagonal details), this is a one possibility of 
VQ when applied to wavelet transform coding. The 
work described in [13] uses zerotrees in wavelet image 
compression. It is based on the information given in 
previously encoded coefficients, which enables the 
decoding to take place without the need for any 
overhead. The disadvantage of this method is to decide 
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whether coefficients in a higher frequency band are 
significant or not based on the information in the lower 
frequency bands. This could lead to a wrong decision 
about the existence of a zerotree root and therefore, to 
the loss of significant image detail [16, 19] combine 
the zerotree with successive approximation scalar 
quantisation. The wavelet coefficients are refined in 
several passes, the most important information being 
transmitted first. It has the ability to perform the 
optimal bit allocation among the bands. Moreover, in 
each pass, it guarantees that a certain level of distortion 
will not be exceeded by each wavelet coefficient. 
These two methods provide the best results published 
to date. A generalization of these methods can be 
found in [21], where optimal sub tree of coefficients 
are found through a global bit allocation procedure. 

Table 1. PSNR and bit rate for various wavelet compression 
schemes for test image ‘Lena’ size 256x256  and 512x512.

3. Wavelet Scalar Quantisation
This technique compares the input data or image value 
element by element with decision levels of the 
quantiser. An index is then transmitted to the receiver 
indicating which quantisation interval is appropriate 
and the receiver reconstructs an approximation to the 
corresponding level. One of the succeeded wavelets 
was using scalar quantisation to date and the first 
persons who used this idea successfully are Gharvi and 
Tabatabi. They have taken the 2 level wavelet 
transform, the lowest resolution is coded using 
Differential Pulse Code Modulation (DPCM) and a 
non uniform scalar quantiser followed by variable 
length coding. The other bands are coded by PCM 
with uniform quantiser followed by run length coding. 
The Federal Bureau of Investigation's (FBI) standard 
fingerprint images compression [3, 7] has adopted a 

Wavelet-Scalar Quantisation (WSQ) which uses bit 
allocation scheme. Each subband has a different 
quantisation step that is determined by the energy of 
the subband.

WSQ by Aware [7] provides a high performance 
software implementation of the FBI WSQ digital 
fingerprint compression algorithm. Where the 
compression range about 2:1 as a minimum and 50:1 
as a maximum. The Embedded Zero tree Wavelet 
algorithm EZW [19] of Shapiro is an iterative WSQ 
algorithm that uses a fixed threshold at each iteration 
to determine which coefficients across subbands are to 
be quantised and encoded. The threshold is set to be 
the bit size of the uniform scalar quantisation that is 
used to quantise the coefficients. The threshold and 
quantisation steps are refined by one half at each 
iteration and the algorithm results in an embedded 
code. In this matter, we suggest another technique that 
associates a wavelet transform and scalar quantisation 
using bit allocation map according to their scale and 
the measures of the energy distribution, where the 
number of quantisation steps are doubled when 
cascading one more level of filtering. A mask was 
used with the size of input image. The bit plane is 
assigned according to the required image rate 
compression using the energy distribution. This mask 
is scanned on the wavelet coefficients resulting from 
the wavelet transformation. Then the entropy coding is 
used to the resulting data. These streams are stored or 
sent to the receiver with a side information or deader 
describe the mask specifications. There are several 
advantages of this scheme, since quantisation error 
variance can be separately controlled in each band by 
careful allocation of bit rate.

3.1. Energy Distribution
A noted characteristic of wavelet transform is its 
capability to place a large percentage of total signal 
energy in the low band subimage (band 3-1, in Figure 
5). Also, from the behaviour of this transform that 
most of the coefficients in every band lie in a narrow 
range around the origin, and the higher levels contain
smaller coefficients and variances. Table 2 shows the 
energy performance of several subbands from test 
image ‘Lena’ using Daubeche’s 6-tap in the case of 
three level multiresolution. Also, it is noticed that the 
subimages 1-4, 2-4, 3-4 have the lowest energy. 
Therefore, it is proposed that they should be quantised 
using different bits, the subimage with higher energy 
should be quantised using large bits, whereas the 
subimage with lower energy may be quantised with 
less number of bits. From Figure 5, the subimage 
numbers 3-4, 2-4, 1-4 contain less information or 
energy than subimages 3-2, 3-3, 2-2, 2-3, 1-2, 1-3 
respectively. Therefore, this implies that it could 
double the number of quantisation steps when 
cascaded more than one level of filtering as shown in 

Lena Size 256x256 Lena Size 512x512

Method
Bitrate 
(bpp) PSNR (dB) Bitrate (bpp) PSNR (dB)

[Antonini et al,1992]
Filter-1 
Filter-2 
Filter-3 

 
0.80
0.78
0.80

31.82
32.10
31.46

-- --

[Lewis and Knowles, 1992] 0.43 33.18 -- --

[Shapiro, 1993] -- --
0.125
0.250
0.50

30.23
33.17
36.28

[Huh et al, 1994] -- -- 0.30
0.40

31.50
32.30

[Said & Pearlman, 1994] -- -- 0.25
0.50

33.69
36.84

[Efstratiadis et al, 96] 0.40 30.5 -- --

[Averbuch et al 1996]
(Daub16)
(Beylkin18)

-- -- 0.128
0.128

33.10
33.41

[Xiong et al, 1997] -- -- 0.20
0.50

33.32
37.36
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Figure 6. If subimages 1-2, 1-3 have to be assigned 8-
level of quantisation steps (coded using 3-bits), 
subimage 2-2, 2-3 assign 16-level (coded using 4-bits). 
On the other hand the subimages 3-4, 2-4, 1-4 may be 
assigned three times fewer, which is 2-level or one-bit. 
Figure 7 shows the performance of the proposal 
quantisation on test images ‘Cameraman’. Figure 8 
shows the wavelet coefficients distribution before 
quantisation. Figure 9 shows the scalar quantisation of 
wavelet coefficients at four level multiresolution. To 
implement this bit allocation, a mask used with proper 
size and depending on the number of bits assigned to 
quantise each block, this can be set according to the 
maximum and minimum values in each block. Then 
the code is mapped to a bit streams. A header 
containing the maximum and minimum values of each 
block is also added to the bit stream.

Figure 5. Wavelet multiresolution image decomposition (3-levels).

Table 2. Energy distribution of some test images.

In case of decoding, the bit stream converted back 
to integers. The intervals were recreated using the 
maximum and minimum values for each block that 
saved in the header. Each integer was mapped to its 
corresponding interval based on the code and assigned 
the centre value of the interval according to quantiser 
map. Then the entire image is taken through the 
inverse of wavelet transform used. Table 3 shows the 
performance result of the proposed technique.

Figure 6. Wavelet multiresolution bit allocation scheme.

Figure 7. Wavelet coefficient scalar quantisation.

-1500 -1000 -500 0 500 1000 1500 2000 2500 3000
10
0

10
1

10
2

103

10
4

10
5

Pixel values

PD
F

Figure 8. Wavelet coefficients distribution for camera test image 
with four levels multiresolution.

EnergyLevel 
No.

Subimage

Number Lena Camera Boat

1

1

1

1-2 

1-3 

1-4 

5.36 %

8.44 %

4.11 %

6.76 %

8.35 %

3.88

6.23 %

6.97 %

2.80 %

2

2

2

2-2 

2-3 

2-4 

3.40 %

6.47 %

2.80 %

3.84 %

5.01 %

2.25 %

4.47 %

4.30 %

1.98 %

3

3

3

3

3-1 

3-2 

3-3 

3-4 

60.17%

2.31 %

5.04 %

1.89 %

63.10%

2.43 %

2.99 %

1.39 %

66.45%

3.23 %

2.35 %

1.23 %
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Figure 9. Scalar quantisation of wavelet coefficients of camera test 
image with four level multiresolutions.

Table 3. PSNR verse average bit rate for some of test images.

4. Wavelet Vector Quantisation
Vector Quantisation (VQ) is a generalisation of scalar 
quantisation that enables us to exploit the similarity 
among bands of wavelet multiresolution. The principle 
involves encoding a sequence of samples (vector) 
rather than encoding each pixel individually. 
According to Shannon’s distortion theory [17, 18], 
better results are always obtained when vectors rather 
than scalars are encoded. 

4.1. Multiresolution Codebook Generation
The decomposition of an image into several resolution 
levels and different edge directions produce subimages 
whose statistical characteristics are much easier to 
compress than the original image. Codebooks are 
typically generated by training a set of images that are 
representative of the images to be encoded. Obviously, 
to compress any particular image, the optimal 
codebook would be structured using the image itself as 
a training image. This kind of codebook is called a 
local codebook and usually results in good 
performance during code procedures, because most of 
the coded image features are represented in the 
codebook vectors. This type of codebooks has two 
main disadvantages. Firstly, it is not possible to 
perform in real time since it is computationally 
intensive during the generation the local codebook for 
every image to be encoded. Secondly, the local 

codebook must be transmitted to the decoder or 
receiver as overhead information, which increases the 
bit rate and time transmission.

A global codebook could be generated using a 
training of several images that can overcome the 
drawbacks mentioned of a local codebook. As a 
wavelet decomposes an image into several resolution 
levels, it enables the generation of a codebook 
containing two-dimensional vectors for each resolution 
level according to subbands (vertical, horizontal and 
diagonal). This could be advantageous even as it 
exhibits lower distortion than a codebook obtained for 
an entire image in the original domain. Also, it could 
reduce quantisation errors and preserve better edges. In 
addition, the search for the best match vector is 
speeded up. This results in the quality of encoded 
image and the performance implementation being 
superior. Each of these codebooks is generated using 
the modified LBG algorithm. The various 
subcodebooks are constructed, forming a general 
codebook called a multiresolution codebook. The low 
frequency subimage is quantised using a scalar 
quantiser or DPCM and transmitted as wavelet 
coefficient subimage.

4.2. General Description of the Compression 
Algorithm

A block diagram of the algorithm is shown in Figure 
10. The algorithm is initialised by the wavelet 
transform decomposition which is used to decompose 
an image into desired resolution level usually between 
3 to 5 levels using Daubechies wavelet. The low 
subimage encoded separately. Since this subimage 
affects the reconstructed image quality the most, it is 
highly correlated which can be exploited to predict 
pixel values. It contains most of the image energy, 
representing mainly image texture information. DPCM 
is the best technique to be used for encoding this 
subimage and a large number of bits are assigned to it. 
The remaining subimages are the high frequency bands 
that might be divided into vectors with various sizes. 
They are coded by vector quantisation using a 
multiresolution codebook which is a combination of 
different band codebooks for various resolutions which 
are generated by the modified LBG using partial 
search partial distortion [8]. The other step in the 
proposed scheme is the entropy coding compression a 
lossless stage which could use Huffman or arithmetic 
coding.

5. Simulation Results 
Experiments are performed on standard 256x256 
greyscale Lena, Cameraman, Boat and Goldhill images 
to test the proposed algorithms at several bit rates. 

Lena Camera Boat

PSNR
(dB)

Rate 
(bpp)

PSNR
(dB)

Rate 
(bpp)

PSNR
(dB)

Rate 
(bpp)

37.15 6.0 35 6.0 37 6.0
35.87 4.0 33 4.0 36.53 4.0
29.17 3.0 27.35 3.0 28.81 3.0
27.95 1.96 26 1.96 27.73 1.96
20.53 1.0 19 1.0 20.10 1.0
19.05 0.5 17 0.5 19.5 0.5
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The Daubechies filters are used in the experiments 
with 4-level wavelet decomposition. The lowest band 
is coded separately from the remaining bands. The 
results of this algorithm on the above test images are 
presented. All the images have a mixture of large 
smooth regions and long oscillatory patterns. In order 
to evaluate the performance of the algorithm, it is 
compared to the direct VQ and the standard JPEG. The 
performance of the algorithm is reported in Figures 
(11, 12, 13). Figure 11 shows the PSNR versus 
compression ratio for the test images using this 
algorithm. Figure 12 shows reconstructed ‘Lena’ test 
image with different compression ratios and PSNR in 
decibel. As it may be seen, no blocking effect can be 
noticed and the image quality is acceptable. Also, 
Figure 13 shows Cameraman test image with different 
compression ratio. The images out side the training has 
less PSNR approximately by 1-1.5 dB.

6. Comparison with other Coders
The measure criterion for comparison was PSNR, 
which can be calculated directly from the original and 
reconstructed data. Figures (14, 15) show a 
comparison of JPEG and the proposed wavelet codec 
for the test image Lena and cameraman with a size 
256x256. The visual quality of the two system’s coder 
for reconstruction ‘Lena’ as shown in Figures (12, 13, 
16, 17). In terms of statistical error, wavelet codec 
gives higher signal to noise ratio in two of the 
examples, Lena and Cameraman. Although all images 
contained noise introduced by the digitisation process, 
the wavelet codec effectively removed this noise 

whilst JPEG spent valuable bits sending this data. The 
results of direct VQ are also included in Figures (18, 
19, 20) as a comparison where the VQ component is 
performed on 4x4 blocks. As a conclusion, it provides 
a very efficient implementation in terms of execution 
time, quality and compression ratio. To summarise, the 
proposed wavelet codec performed well when 
compared with the industrial standard JPEG algorithm 
and much better than vector quantisation technique. 
These results show that the algorithm provides a 
highly competitive solution to the problem of image 
data compression.
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b) Compression ratio 16:1 
PSNR = 32.50.

a)  Original test image.

d) Compression ratio 64:1 
PSNR = 24.77.

c) Compression ratio 35:1 
PSNR = 27.34.

Figure 12. Simulation results using wavelet transform.

b) Compression ratio 12:1 
PSNR = 32.85.

a) Original test image.

d) Compression ratio 64.25:1 
PSNR = 23.99.

c) Compression ratio 31.6:1 
PSNR = 26.78.

Figure 13. Simulation results using wavelet transform.

Figure 14. PSNR comparison between JPEG and proposed wavelet 
technique for Lena test image.

10 20 30 40 50 60 70
15

20

25

30

35

40

45

Compression Ratio

PS
N
R
 ( 
dB

)

WT  
JPEG

Figure 15. PSNR comparison between JPEG and proposed wavelet 
technique for Cameraman test image.

b) Compression rate 8:1 
PSNR = 37.82 dB.

a) Original test image.

d) Compression rate 64:1 
PSNR = 21.93 dB.

c) Compression rate 32:1 
PSNR = 30.81 dB.

Figure 16. Simulation results using standard JPEG.

b) Compression ratio 8:1 
PSNR = 33.19 dB.

a) Original test image.

d) Compression ratio 64:1 
PSNR = 16.9 dB.

c) Compression ratio 32:1 
PSNR = 24.3 dB.

Figure 17. Simulation results using standard JPEG.
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b) Compression ratio 15.28 
PSNR = 31.28 dB.

a) Original test image.

d) Compression ratio 55:1 
PSNR = 24.04 dB.

c) Compression ratio 29.25 
PSNR = 27.27 dB.

Figure 18. Simulation results using vector quantization.

b) Compression ratio 15.28:1
PSNR = 29.46 dB.

a) Original test image.

d) Compression ratio 55.36:1
PSNR = 22.62 dB.

c) Compression ratio 29.25:1
PSNR = 25.78.

Figure 19. Simulation results using vector quantisation.

b) Compression ratio 15.28:1 
PSNR = 30.20 dB.

a) Original test image.

d) Compression ratio 55.36:1
PSNR = 23.68 dB.

c) Compression ratio 29.25:1
 PSNR = 26.15 dB.

Figure 20. Simulation results using vector quantization.
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