ELECTRICAL AUTOMATION SYSTEMS TOWARDS INTELLIGENT AND ENERGY EFFICIENCY APPLICATIONS

Musse Mohamud Ahmed

IIUM PRESS

INTERNATIONAL ISLAMIC UNIVERSITY MALAYSIA

ELECTRICAL AUTOMATION SYSTEMS TOWARDS

INTELLIGENT AND ENERGY EFFICIENCY APPLICATIONS

Musse Mohamud Ahmed

Electrical and Computer Engineering Department, The Faculty of Engineering, IlUM

Published by: IIUM Press International Islamic University Malaysia

First Edition, 2011 © HUM Press, HUM

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise, without any prior written permission of the publisher.

Perpustakaan Negara Malaysia

Cataloguing-in-Publication Data

ISBN: 978-967-418-170-3

Member of Majlis Penerbitan Ilmiah Malaysia – MAPIM (Malaysian Scholarly Publishing Council)

Printed by: **HUM PRINTING SDN.BHD.**

No. 1, Jalan Industri Batu Caves 1/3
Taman Perindustrian Batu Caves
Batu Caves Centre Point
68100 Batu Caves
Selangor Darul Ehsan

Tel: +603-6188 1542 / 44 / 45 Fax: +603-6188 1543 EMAIL: iiumprinting@yahoo.com

CONTENTS OF THE BOOK

<u>Chapter</u>	<u>Title & Author</u> <u>P</u>	age No
PART I: ELEC	CTRICAL DISTRIBUTION AUTOMATION SYSTEMS	
CHAPTER 1:	ELECTRICAL DISTRIBUTION SYSTEM	2
CHAPTER 2:	ELECTRIC DISTRIBUTION EQUIPMENT FAULTS	6
CHAPTER 3:	FAULTS FROM TRADITIONAL TO AUTOMATION TECHNIQUES Musse Mohamud Ahmed and Soo Wai Lian	15
CHAPTER 4:	SCADA SYSTEM FOR ELECTRICAL DISTRIBUTION SYSTEM	22
CHAPTER 5:	SCADA SOFTWARE DEVELOPMENT—INDUSOFT CASE STUDY Musse Mohamud Ahmed and Soo Wai Lian	25
CHAPTER 6:	PROTECTION SYSTEM FOR ELECTRICAL DISTRIBUTION Musse Mohamud Ahmed and Soo Wai Lian	37
CHAPTER 7:	RELAYS Musse Mohamud Λhmed and Soo Wai Lian	43
CHAPTER 8:	REMOTE TERMINAL UNIT (RTU)	49
CHAPTER 9:	INTELLIGENT AUTOMATION SYSTEM: AUTOMATION HARDWARE	60
	DEVELOPMENT Musse Mohamud Ahmed and Soo Wai Lian	
CHAPTER 10:	SCHEMATIC DIAGRAMS OF AUTOMATED SUBSTATION PANELS Musse Mohamud Ahmed and Soo Wai Lian	69
CHAPTER 11:	SOFTWARE AUTOMATION DEVELOPMENT	78
CHAPTER 12:	DEVELOPMENT OF MODBUS TCP/IP SETTING	87
CHAPTER 13:	POWER LINE CARRIER COMMUNICATION SYSTEM Musse Mohamud Ahmed and Soo Wai Lian	96
CHAPTER 14:	WIRELESS COMMUNICATIONS FOR ELECTRIC SYSTEM AUTOMATION Othman O. Khalifa and Musse Mohamud Ahmed	103
CHAPTER 15:	DEVELOPMENT OF AUTOMATION SYSTEM FOR SMALL/MEDIUM	

	SCALE BIOMASS BASED RENEWABLE POWER PLANTS 1 Musse Mohamud Ahmed and Sheroz Khan	08
Chapter	Title & Author Page 1	<u>No</u>
PART II: INTI	ELLIGENT SYSTEMS USING COMMUNICATION AND ELECTRONICS	
SYST	TEMS	
CHAPTER 16:	MODELING OF LOW VOLTAGE POWER LINE FOR DATA COMMUNICATION: SIMULATION RESULTS	18
CHAPTER 17:	LOW VOLTAGE POWERLINE ANALYSIS AND SIMULATION RESULTS	25
CHAPTER 18;	ZIGBEE APPLICATIONS TO WIRELESS COMMUNICATION SYSTEMS	33
CHAPTER 19:		38
CHAPTER 20:	PIC 16F877A FOR HYBRID VEHICLE CONTROLLER	44
CHAPTER 21:	FPGA-BASED HARDWARE MODELING OF LIGHT RAIL TRANSIT FARE CARD CONTROLLER	55
CHAPTER 22:	DEVELOPMENT OF A METHOD TO MAINTAIN TEMPERATURE AND HUMIDITY IN AN OPEN COMPOUND RESTAURANT	66
PART III: ENE FAN MOTORS	ERGY EFFICIENCY APPLICATIONS TO ELECTRIC MOTORS AND	
CHAPTER 23:	ELECTRIC MOTOR	76
CHAPTER 24:	LOSSES OF ELECTRIC MOTORS1 Musse Mohamud Ahmed, Noor Zatil Amali Bt Muhammad Hanapi and Che Fazilah Bt Fathil	80
CHAPTER 25:	ELECTRIC MOTOR EFFICIENCY	85

	and Che Fazilah Bt Fathil	
CHAPTER 26:	ENERGY EFFICIENCY IMPLEMENTATION OF PERMANENT MAGNET SYNCHRONOUS MOTOR	191
<u>Chapter</u>	Title & Author	Page No
CHAPTER 27:	ENERGY CALCULATIONS	195
CHAPTER 28:	MODELING, RESULT AND ANALYSIS	203
CHAPTER 29:	AIR BLOWING EQUIPMENT Musse Mohamud Ahmed, Rafizah Rahmatullah and Syarifah Nur Zati Abdul Rashid	210
CHAPTER 30:	ENERGY USAGE IN MALAYSIA	214
CHAPTER 31:	FAN MOTOR EFFICIENCY REQUIREMENT Musse Mohamud Ahmed, Rafizah Rahmatullah and Syarifah Nur Zati Abdul Rashid	217
CHAPTER 32:	APPLICATION OF FAN MOTOR ENEGY EFFICIENCY Musse Mohamud Ahmed, Rafizah Rahmatullah and Syarifah Nur Zati Abdul Rashid	220
CHAPTER 33:	FAN EFFICIENCY GRADE (FEG) DEVELOPMENT STAGES	223
CHAPTER 34:	FEG AND FMEG PRACTICAL CONSIDERATIONS – FAN SELECTIONS GUIDE Musse Mohamud Ahmed, Rafizah Rahmatullah and Syarifah Nur Zati Abdul Rashid	227
CHAPTER 35:	RESULTS AND DISCUSSIONS Musse Mohamud Ahmed, Rafizah Rahmatullah and Syarifah Nur Zati Abdul Rashid	232

CHAPTER 4

SCADA SYSTEM FOR ELECTRICAL DISTRIBUTION SYSTEM

Musse Mohamud Ahmed and Soo Wai Lian

Department of Electrical and Computer Engineering, Faculty of Engineering International Islamic University Malaysia

Chapter 4 deals with SCADA history overview and in order to upgrade the existing one to better one and SCADA research to distribution system in Malaysia.

4.1 SCADA History

In 1997, a switching gear tripped at the Sultan Salehuddin Abdul Aziz power station in Klang, caused load shedding from Kuala Lumpur to Johor Baharu [1]. At that time, TNB was not equipped to deal with unexpected crisis. In order to improve the quality of service to consumers, TNB has installed Supervisory Control and Data Acquisition System/Data Automation (SCADA/DA) programmed in the distribution network in stages from 1998 to 2004 [2].

SCADA is a process control system that enables a site operator to monitor and control processes that are distributed among various remote sites. The IEEE Std C37.1-1994 specification for the electric power industry defines SCADA systems as "a system operating with coded signals over communication channels so as to provide control of remote terminal unit (RTU) equipment" [3].

SCADA began in the early sixties as an electronic system operating as input and output (I/O) transmissions between a master station and a remote station. The master stations would receive data through a telemetry network and then store the data on mainframe computers. In the early seventies, Distributed Control Systems (DCS) were developed to control separate remote subsystems and in the eighties, with the development of the microcomputer, process control could be distributed among remote sites. Further development enabled the DCS to use Programmable Logic Controllers (PLC), which have the ability to control sites without taking direction from a master. In the late nineties, SCADA systems were built with DCS capabilities and systems were customized based on certain proprietary control features built in by the designers. Now with the Internet being utilized more as a communication tool, SCADA and telemetry systems are used automated software with certain portals to download information or control a process. Good SCADA systems today not only control processes but are also used for measuring, forecasting, billing, analyzing and planning.

Historically, SCADA system has consisted of four components which are the supervisory system, remote terminal units, a communication network, and field instruments.