ANTENNAS AND PROPAGATION
Modeling, Simulation & Measurements

Edited by

MD. RAFIQUL ISLAM B.Sc., M.Sc., Ph.D., MIEEE
International Islamic University Malaysia

JALEL CHEBIL B.Sc., M.Sc., Ph.D., MIEEE
International Islamic University Malaysia

IIUM PRESS
INTERNATIONAL ISLAMIC UNIVERSITY MALAYSIA
ANTENNAS
AND
PROPAGATION:
Modeling, Simulation & Measurements

Edited by

Md. Rafiquul Islam B.Sc.,M.Sc.,Ph.D.,MIEEE
International Islamic University Malaysia

Jalel Chebil B.Sc.,M.Sc.,Ph.D.,MIEEE
International Islamic University Malaysia

IIUM Press
Table of Content

Preface

Part I Microstrip Antenna Design

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
</table>
| Chapter 1 | Ultra Wideband Antennas
Muhammad Feroze Akbar J. Khan, Shaker MM. Al-Karaki, Md. Rafiqul Islam | 1 |
| Chapter 2 | Patch Antenna Parameters For Ultra Wideband Design
Muhammad Feroze Akbar J. Khan, Shaker MM. Al-Karaki, Md. Rafiqul Islam | 6 |
| Chapter 3 | Design Procedure for Microstrip Patch Antenna
Shaker MM. Al-Karaki, Muhammad Feroze Akbar J. Khan, Md. Rafiqul Islam | 13 |
| Chapter 4 | Design of Symmetrical Fed Patch UWB Antenna Using Partial Ground and Stairs
Md. Rafiqul Islam, AHM Zahirul Alam, Muhammad Feroze Akbar J. Khan and Shaker MM. Al-Karaki | 22 |
| Chapter 5 | Design of Symmetrical Fed Patch UWB Antenna Using Slotted Partial Ground And Stairs
Md. Rafiqul Islam, AHM Zahirul Alam, Muhammad Feroze Akbar J. Khan and Shaker MM. Al-Karaki | 33 |
| Chapter 6 | Design of Symmetrical Fed Patch UWB Antenna With Tuning Stub And Symmetrical Slotted Ground
Md. Rafiqul Islam, AHM Zahirul Alam, Muhammad Feroze Akbar J. Khan and Shaker MM. Al-Karaki | 40 |
| Chapter 7 | Design of Unsymmetrical Fed Patch UWB Antenna With Unsymmetrical Slotted Ground
Md. Rafiqul Islam, AHM Zahirul Alam, Shaker MM. Al-Karaki and Muhammad Feroze Akbar J. Khan | 49 |
| Chapter 8 | Ultra Wideband Antenna With Band Notch Using Asymmetrical Feedline
AHM Zahirul Alam and Md. Rafiqul Islam | 56 |
| Chapter 9 | Multi-Band Reconfigurable Antenna Using RF MEMS Switch
AHM Zahirul Alam and Md. Rafiqul Islam | 63 |
| Chapter 10 | Multi-Band Planar Patch Antenna
AHM Zahirul Alam and Md. Rafiqul Islam | 69 |
| Chapter 11 | Tuning Fork Type Planar Antenna
AHM Zahirul Alam and Md. Rafiqul Islam | 76 |
| Chapter 12 | Leaky-Wave Array Antenna
Mimi Aminah Wan Nordin, Hany E. Abd El-Raouf, AHM Zahirul Alam, Md. Rafiqul Islam | 83 |
Chapter 13 Overview of Smart Antenna System
Ibrahim A. Haji, Md. Rafiqul Islam, A.H. M. Zahirul Alam, Othman O. Khalifa
Khaizuran Abdullah

Chapter 14 Direction of Arrival Algorithms For Array Antenna Design
Ibrahim A. Haji, Md. Rafiqul Islam, A.H. M Zahirul Alam, Othman O. Khalifa
Khaizuran Abdullah

Chapter 15 Analysis of Beamforming Algorithms
Ibrahim A. Haji, Md. Rafiqul Islam, A.H. M Zahirul Alam, Othman O. Khalifa
and Khaizuran Abdullah

Chapter 16 Design of Linear Array Antenna For Smart Antenna Application
Md. Rafiqul Islam, A.H. M Zahirul Alam, Othman O. Khalifa, Khaizuran
Abdullah, Ibrahim A. Haji

Part II Propagation Measurements and Modeling

Chapter 17 Propagation Path Loss Modeling For Wireless Applications
Ali Khadim, Jael Chebil and Md Rafiqul Islam

Chapter 18 Comparison between Measured and Predicted Path Loss For Mobile
Communication in Malaysia
Jael Chebil, Md Rafiqul Islam and Ali Khadim

Chapter 19 Proposed Path Loss Models For Suburban Area in Kuala Lumpur
Jael Chebil, Md Rafiqul Islam and Ali Khadim

Chapter 20 Rain Rate Distribution For Microwave Link Design in Malaysia
Jael Chebil and Tharek Abd. Rahman

Chapter 21 Rain Rate Conversion Factor in Malaysia
Jael Chebil and Tharek Abd. Rahman

Chapter 22 A Matlab Program for Prediction of Rain Rate and Rain Attenuation
Distributions in Malaysia
Jael Chebil and Tharek Abd. Rahman

Chapter 23 Time-Delay Neural Network For Rainfall Forecasting
Kyaw Kyaw Htike, Othman O. Khalifa and Md. Rafiqul Islam

Chapter 24 Development of One-Minute Rain Rate Contour Maps For
Radiowave Propagation in Malaysia
Jael Chebil and Tharek Abd. Rahman

Chapter 25 Rain Attenuation Measurements in Malaysia
Jael Chebil and Tharek Abd. Rahman

Chapter 26 Propagation Study on Rain Attenuation at 18 GHz in Malaysia
Jael Chebil and Tharek Abd. Rahman

Chapter 27 Investigation Of Rain Attenuation At 38 GHz

97
108
121
137
152
157
164
171
180
186
193
201
206
214
Chapter 28 Rain Attenuation Prediction Models For Earth-Space Link
Ahmad Fadzil Ismail and Khairayu Badron
Page 220
Chapter 29 Development of A Modified Rain Attenuation Prediction Model
Ahmad Fadzil Ismail and Khairayu Badron
Page 226
Chapter 30 Antenna Losses Due To Rainfall And Its Effect On The Rain Attenuation Measurements
Jaleel Chebil and Tharem Abd. Rahman
Page 233
Chapter 31 Modeling Of Wet Antenna Losses For Frequencies 15-38 GHz
Md. Rafiqul Islam, Jaleel Chebil and Tharem Abdul Rahman
Page 239
Chapter 32 Path Length Reduction Factor For Rain Attenuation Prediction In Malaysia
Md. Rafiqul Islam, Jaleel Chebil, Ahmad Fadzil Ismail and Tharem Abdul Rahman
Page 248
Chapter 33 Frequency Scaling Methods For Rain Attenuation Prediction
Md. Rafiqul Islam, Jaleel Chebil, Ahmad Fadzil Ismail and Tharem Abdul Rahman
Page 256
Chapter 34 Proposed Frequency Scaling Method Based On Measured Rain Attenuation Data
Md. Rafiqul Islam, Jaleel Chebil and Tharem Abdul Rahman
Page 269
Chapter 35 Analyses Of Rain Fade Characteristics For A 38 GHz Link In The Tropics
Ahmad Fadzil Ismail and Khairayu Badron
Page 278
Chapter 36 Worst-Month Statistics Modeling Based on Measured Data
Md. Rafiqul Islam, Jaleel Chebil and Tharem Abdul Rahman
Page 285
Chapter 37 Worst-Month Rain Fade Statistics at 38 GHz
Ahmad Fadzil Ismail and Khairayu Badron
Page 298
Chapter 38 Rain Fade Slope Prediction Model Based On Satellite Data Measured In Malaysia
Md. Rafiqul Islam, Khalid Al-Khateeb, Sheroz Khan and Hassan Dao
Page 303
Chapter 39 Effects Of Rain On Free Space Optical Propagation
Suriza A.Z., Md. Rafiqul Islam, Wajdi Al-Khateeb and A.W. Najji
Page 310
Chapter 40 Investigation Of Solar Environment Effects On Space Assets & Satellite Signals
Othman O. Khalifa, Md. Rafiqul Islam, Jaleel Chebil, Saad Bashir and Sivamohan A/L V. Shinnugam
Page 318
Chapter 23

Time-Delay Neural Network for Rainfall Forecasting

Kyaw Kyaw Htike¹, Othman O. Khalifa¹ and Md. Rafiquil Islam¹

23.1 Introduction

Accurate forecasts of the spatial and temporal distribution of rainfall are useful to convert one-minute rain intensity data for designing microwave link and predicting attenuation on microwave propagation. Chapter 22 has elaborated the procedure how to convert the data from annual statistics to one-minute statistics. However, rainfall is one of the most complex and challenging components of the hydrology cycle to comprehend and to forecast due to the various dynamic environmental factors and random variations both spatially and temporally[1]. There are several reasons why Artificial Neural Networks (ANN) are valuable and appropriate for use in such forecasting systems. Firstly, they are data-driven methods which have the ability to model both linear and non-linear systems without needing to make priori assumptions which are implicit in most classical statistical approaches such as the Box–Jenkins or ARIMA which assume that the time series under study are generated from linear processes, which is not the case in most real-world situations [2]. Secondly, they are capable of generalization. After learning the data that have been given to them during the training, they can often correctly estimate the unseen part of a population which is not part of the training data. Finally, they have been shown to be universal functional approximators and can approximate any continuous function to any desired accuracy.

23.2 Related Works

There have been many rainfall forecasting models developed based on the use of ANNs to implement the pattern recognition methodology. However, rainfall forecasting can apply to many time horizons such as short term [3], medium term, and long term periods [4] [5]. Some authors design systems which can forecast yearly data, some try to forecast monthly data [5] whereas some try to forecast daily data [6]. Most of them concentrate on one-step-ahead prediction. If multi-step prediction is then required, many iterations of one-step-ahead can be performed. The accuracy of the forecasts would of course decrease with the number of such iterations.

The traditional techniques for statistical weather forecasting include ARMA models, Box-Jenkins Models and Multivariate Adaptive Regression Splines [7]. When the machine learning became popular, there have been many attempts to build rainfall forecasting

¹ Department of Electrical and Computer Engineering, Kulliyyah of Engineering
International Islamic University Malaysia (IIUM)

186