ANTENNAS AND PROPAGATION
Modeling, Simulation & Measurements

Edited by
MD. RAFIQUL ISLAM B.Sc.,M.Sc.,Ph.D.,MIEEE
International Islamic University Malaysia

JALEL CHEBIL B.Sc.,M.Sc.,Ph.D.,MIEEE
International Islamic University Malaysia

IIUM PRESS
INTERNATIONAL ISLAMIC UNIVERSITY MALAYSIA
ANTENNAS
AND
PROPAGATION:
Modeling, Simulation & Measurements

Edited by

Md. Rafiqul Islam B.Sc., M.Sc., Ph.D., MIEEE
International Islamic University Malaysia

Jalel Chebil B.Sc., M.Sc., Ph.D., MIEEE
International Islamic University Malaysia

IIUM Press
Table of Content

Part I Microstrip Antenna Design

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
</table>
| 1 | Ultra Wideband Antennas
Muhammad Feroze Akbar J. Khan, Shaker MM. Al-Karaki, Md. Rafiquil Islam | 1 |
| 2 | Patch Antenna Parameters For Ultra Wideband Design
Muhammad Feroze Akbar J. Khan, Shaker MM. Al-Karaki, Md. Rafiquil Islam | 6 |
| 3 | Design Procedure for Microstrip Patch Antenna
Shaker MM. Al-Karaki, Muhammad Feroze Akbar J. Khan, Md. Rafiquil Islam | 13 |
| 4 | Design of Symmetrical Fed Patch UWB Antenna Using Partial Ground and Stairs
Md. Rafiquil Islam, AHM Zahirul Alam, Muhammad Feroze Akbar J. Khan and Shaker MM. Al-Karaki | 22 |
| 5 | Design of Symmetrical Fed Patch UWB Antenna Using Slotted Partial Ground And Stairs
Md. Rafiquil Islam, AHM Zahirul Alam, Muhammad Feroze Akbar J. Khan and Shaker MM. Al-Karaki | 33 |
| 6 | Design of Symmetrical Fed Patch UWB Antenna With Tuning Stub And Symmetrical Slotted Ground
Md. Rafiquil Islam, AHM Zahirul Alam, Muhammad Feroze Akbar J. Khan and Shaker MM. Al-Karaki | 40 |
| 7 | Design of Unsymmetrical Fed Patch UWB Antenna With Unsymmetrical Slotted Ground
Md. Rafiquil Islam, AHM Zahirul Alam, Shaker MM. Al-Karaki and Muhammad Feroze Akbar J. Khan | 49 |
| 8 | Ultra Wideband Antenna With Band Notch Using Asymmetrical Feedline
AHM Zahirul Alam and Md. Rafiquil Islam | 56 |
| 9 | Multi-Band Reconfigurable Antenna Using RF MEMS Switch
AHM Zahirul Alam and Md. Rafiquil Islam | 63 |
| 10 | Multi-Band Planar Patch Antenna
AHM Zahirul Alam and Md. Rafiquil Islam | 69 |
| 11 | Tuning Fork Type Planar Antenna
AHM Zahirul Alam and Md. Rafiquil Islam | 76 |
| 12 | Leaky-Wave Array Antenna
Mimi Aminah Wan Nordin, Hany E. Abd El-Raouf, AHM Zahirul Alam, Md. Rafiquil Islam | 83 |
Chapter 13 Overview of Smart Antenna System Ibrahim A. Haji, Md. Rafiqul Islam, A.H. M. Zahirul Alam, Othman O. Khalifa and Khaizuran Abdullah

Chapter 16 Design of Linear Array Antenna For Smart Antenna Application Md. Rafiqul Islam, A.H. M Zahirul Alam, Othman O. Khalifa, Khaizuran Abdullah, Ibrahim A. Haji

Part II Propagation Measurements and Modeling

Chapter 17 Propagation Path Loss Modeling For Wireless Applications Ali Khadim, Jafel Chebil and Md Rafiqul Islam

Chapter 18 Comparison between Measured and Predicted Path Loss For Mobile Communication in Malaysia Jafel Chebil, Md Rafiqul Islam and Ali Khadim

Chapter 19 Proposed Path Loss Models For Suburban Area in Kuala Lumpur Jafel Chebil, Md Rafiqul Islam and Ali Khadim

Chapter 20 Rain Rate Distribution For Microwave Link Design in Malaysia Jafel Chebil and Tharek Abd. Rahman

Chapter 21 Rain Rate Conversion Factor in Malaysia Jafel Chebil and Tharek Abd. Rahman

Chapter 22 A Matlab Program for Prediction of Rain Rate and Rain Attenuation Distributions in Malaysia Jafel Chebil and Tharek Abd. Rahman

Chapter 23 Time-Delay Neural Network For Rainfall Forecasting Kyaw Kyaw Hrike, Othman O. Khalifa and Md. Rafiqul Islam

Chapter 24 Development of One-Minute Rain Rate Contour Maps For Radiowave Propagation in Malaysia Jafel Chebil and Tharek Abd. Rahman

Chapter 25 Rain Attenuation Measurements in Malaysia Jafel Chebil and Tharek Abd. Rahman

Chapter 26 Propagation Study on Rain Attenuation at 18 GHz in Malaysia Jafel Chebil and Tharek Abd. Rahman

Chapter 27 Investigation Of Rain Attenuation At 38 GHz 214
Chapter 28 Rain Attenuation Prediction Models For Earth-Space Link
Ahmad Fadzil Ismail and Khairayu Badron

Chapter 29 Development of A Modified Rain Attenuation Prediction Model
Ahmad Fadzil Ismail and Khairayu Badron

Chapter 30 Antenna Losses Due To Rainfall And Its Effect On The Rain
Attenuation Measurements
Jalel Chebil and Tharek Abd. Rahman

Chapter 31 Modeling Of Wet Antenna Losses For Frequencies 15-38 GHz
Md. Rafiqul Islam, Jalel Chebil and Tharek Abdul Rahman

Chapter 32 Path Length Reduction Factor For Rain Attenuation Prediction In
Malaysia
Md. Rafiqul Islam, Jalel Chebil, Ahmad Fadzil Ismail and Tharek Abdul Rahman

Chapter 33 Frequency Scaling Methods For Rain Attenuation Prediction
Md. Rafiqul Islam, Jalel Chebil, Ahmad Fadzil Ismail and Tharek Abdul Rahman

Chapter 34 Proposed Frequency Scaling Method Based On Measured Rain
Attenuation Data
Md. Rafiqul Islam, Jalel Chebil and Tharek Abdul Rahman

Chapter 35 Analyses Of Rain Fade Characteristics For A 38 GHz Link In The
Tropics
Ahmad Fadzil Ismail and Khairayu Badron

Chapter 36 Worst-Month Statistics Modeling Based on Measured Data
Md. Rafiqul Islam, Jalel Chebil and Tharek Abdul Rahman

Chapter 37 Worst-Month Rain Fade Statistics at 38 GHz
Ahmad Fadzil Ismail and Khairayu Badron

Chapter 38 Rain Fade Slope Prediction Model Based On Satellite Data Measured
In Malaysia
Md. Rafiqul Islam, Khalid Al-Khateeb, Sherox Khan and Hassan Dao

Chapter 39 Effects Of Rain On Free Space Optical Propagation
Suriza A.Z., Md. Rafiqul Islam, Wajdi Al-Khateeb and A.W. Naji

Chapter 40 Investigation Of Solar Environment Effects On Space Assets &
Satellite Signals
Othman O. Khalifa, Md. Rafiqul Islam, Jalel Chebil, Saad Bashir and Sivamohan
A/L V. Shunmugam
Chapter 13

Overview of Smart Antenna Systems

Ibrahim A. Haji\(^1\), Md. Rafiqul Islam\(^1\), A.H. M Zahirul Alam\(^1\), Othman O. Khalifa\(^1\) and Khaizuran Abdullah\(^1\)

13.1 Introduction

This chapter presents the fundamental theories and applications of smart antennas. It includes the general theory of antenna array and their applications. A smart antenna system combines multiple antenna elements with a signal-processing capability to optimize its radiation and/or reception pattern automatically in response to the signal environment [1,3,5]. It is the port through which radio frequency (RF) energy is coupled from the transmitter to the outside world and, in reverse, to the receiver from the outside world. In the subsequent sections of this chapter, an introduction to the essential concepts of smart antenna systems and the important advantages of smart antenna system design over conventional omnidirectional approaches are presented.

13.2 Antenna Systems

The electromagnetic energy from one medium (space) is coupled to another (e.g., wire, coaxial cable, or waveguide) by antennas whose physical designs can vary greatly. Since the early days of wireless communications, there has been the simple dipole antenna, which radiates and receives equally well in all directions. To find its users, this single-element design broadcasts omnidirectionally as shown in Figure 13.1 [2]. While adequate for simple RF environments where no specific knowledge of the users' whereabouts is available, this unfocused approach scatters signals, reaching desired users with only a small percentage of the overall energy sent out into the environment [1,3, 10].

Figure 13.1 Omnidirectional Antenna and Coverage Patterns [3]

\(^1\)Department of Electrical and Computer Engineering, Kulliyyah of Engineering, International Islamic University Malaysia (IIUM)