MANUFACTURING MANAGEMENT
From basic machining to quality product

EDITORS
ERRY YULIAN TRIBLAS ADESTA
AKM Nurul Amin
Mohamad Yeakub Ali

IIUM Press
MANUFACTURING MANAGEMENT
From basic machining to quality product

EDITORS
ERRY YULIAN TRIBLAS ADESTA
AKM Nurul Amin
Mohamad Yeakub Ali

IIUM Press
CONTENTS

Preface

PART I: MACHINING

Chapter 1 - Investigation of Minimum Chip Thickness in Micro End Milling of PMMA: Process development ... 3

Mohammad Yeakub Ali¹, Asfana Banu², Adibah³, and Nur Atiqah ⁴
1, 2, 3, 4 Department of Manufacturing and Materials Engineering
Faculty of Engineering – International Islamic University Malaysia
☒ : mnyali@iium.edu.my

Chapter 2 - Investigation of Minimum Chip Thickness in Micro End Milling of PMMA:
Experiment and Analysis 800 μm Diameter Tool 11

Mohammad Yeakub Ali¹, Asfana Banu Mohamad Ashara², Adibah Abdul Wahab³, and Nur Atiqah
Abdul Rahman Azmil⁴
1, 2, 3, 4 Department of Manufacturing and Materials Engineering
Faculty of Engineering – International Islamic University Malaysia
☒ : mnyali@iium.edu.my

Chapter 3 - Investigation of Minimum Chip Thickness in Micro End Milling of PMMA:
Experiment and Analysis 1.0 mm Diameter Tool 18

Mohammad Yeakub Ali¹, Asfana Banu Mohamad Ashara², Adibah Abdul Wahab³ and Nur Atiqah
Abdul Rahman Azmil⁴
1, 2, 3, 4 Department of Manufacturing and Materials Engineering
Faculty of Engineering – International Islamic University Malaysia
☒ : mnyali@iium.edu.my

Chapter 4 - Machining With Absent of Coolant.. 26

Umnu Atiqah Khairiyah bt Mohamad
1. Faculty of Engineering – International Islamic University Malaysia
☒ : eika870126@gmail.com /eika_870126@yahoo.com / ☒ :

Chapter 5 – The Effect of deep cryogenic treatment on the properties of AISI D2 Tool steel .. 32

Erry Yulian Triblas Adesta¹ and Belal Ahmed Ghazal²
1, 2 Faculty of Engineering – International Islamic University Malaysia
E-mail: eadesta@iium.edu.my;belalghazal88@gmail.com
PART II: MANAGEMENT

Chapter 13 - Crashing a Project in PERT/CPM network ... 91

Zahir Hussain ¹ and Erry Yulian Triblas Adestra ²
1, 2. Faculty of Engineering – International Islamic University Malaysia
✉ : cadeasta@iiuni.edu.my; hussain@iiuni.edu.my / ☎ :

Chapter 14 - Project Management with PERT and CPM ... 100

Aalya Banu
Faculty of Engineering – International Islamic University Malaysia
✉ : aalya.banu@gmail.com / ☎ :

Chapter 15 - Risk Management .. 108

Siti Susilawati Kiswari
1, 2. Faculty of Engineering – International Islamic University Malaysia
✉ :

Chapter 16 – Development of Thermoselect Process in Waste Management System in Malaysia ... 119

Hadi Purwanto¹, Rusila Zamani bt Jusoh @ Abd Rashid²
1, 2. Faculty of Engineering – International Islamic University Malaysia
✉ : hadi@iiuni.edu.my; shilarashid21@yahoo.com / ☎ :

Chapter 17 - The Impacts of Using Plastic Bags .. 125

Rusila Zamani bt Jusoh @ Abd Rashid¹
1. Faculty of Engineering – International Islamic University Malaysia
✉ : shilarashid21@yahoo.com /

PART III: MATERIALS

Chapter 18 - The Use of Hydroxyapatite (Ha) For Bone Implant Application 132

Rusila Zamani bt Jusoh @ Abd Rashid¹
1. Faculty of Engineering – International Islamic University Malaysia
✉ : shilarashid21@yahoo.com
Chapter 26 - Study of Zinc Corrosion Behavior in Various Potassium Hydroxide Electrolyte Concentrations ... 195

Zul Hafiz Husnin¹ and Noraini Mohamed Noor²
¹, ², Faculty of Engineering – International Islamic University Malaysia
✉ : myside86@yahoo.com; norainimnoor@gmail.com

Chapter 27 Mechanical and Morphological Characterization of Porous Alumina-Hydroxyapatite Composite: Effects of Sintering Temperature 202

Nur Izzati Zulkifli
Faculty of Engineering – International Islamic University Malaysia
✉ : n.izzati86@gmail.com

Chapter 28 - Study of Starch Addition on Porous Bioceramics Scaffolds: Effects on Strength and Porosity ... 212

Nur Izzati Zulkifli
Faculty of Engineering – International Islamic University Malaysia
✉ : n.izzati86@gmail.com

Chapter 29 - SEM Analysis of Coir Fiber and Coir Fiber-Albumen-Concrete Before and After Surface Treatments ... 220

Nurizan Omar¹ and Zuraida Ahmad²
¹, ², Faculty of Engineering – International Islamic University Malaysia
✉ : izan_286@yahoo.com.my; zuraidaa@iiium.edu.my

Chapter 30 - Powder Coating Has Potential In Developing Several Industries 230

Suryanto¹ and Nurul Azhani Yunus²
¹, ², Faculty of Engineering – International Islamic University Malaysia
✉ : suray@iiium.edu.my; nuraz3510@gmail.com

Chapter 31 - Ultrasonic for Non-Destructive Testing of Materials .. 237

Siti Susilawati Kiswari
Faculty of Engineering – International Islamic University Malaysia
✉ : ctusie@hotmail.com

PART IV: QUALITY

Chapter 32 - Quality Management System: In light of Project Management 251
Investigation of Minimum Chip Thickness in Micro End Milling of PMMA: Process Development

Mohammad Yeakub Ali¹, Asfana Banu², Adibah³, and Nur Atikah⁴
¹, ², ³, ⁴ Department of Manufacturing and Materials Engineering
Faculty of Engineering – International Islamic University Malaysia
✉: mmvali@iiuvm.edu.my

1. Introduction

Micro end milling is one of two tool based micromachining techniques nowadays that is very important for machining micro channel and other micro mold. The micro end milling used micro scale for machining. The cutting tool used for machining also in micro scale. Nowadays, the micro end milling has been used widely in the industry such as in the medical, aerospace and the telecommunication field [1].

Micro end milling operations is almost the same as the conventional end milling operations but the difference is only the dimensional. The micro end milling operations feed per tooth to tool radius (f / r) ratio is bigger than conventional milling in order to keep productivity. On the other hand, stresses on the tiny micro tool are bigger compare to conventional tool. These conditions will shorten the micro tool life [2].

Micro end milling is characterized by mechanical interaction of a sharp tool with the workpiece material, causing breakage inside the material along defined paths, eventually leading to removal of the useless part of the workpiece in the form of chips [3].

The kinematics process do not change as the end milling process scales down to micro scale but the cutting and surface generation mechanisms involved in the process do change. It is due to the different cutting mechanics induced by the scaling relationship between the tool geometry, workpiece micro structure, and cutting geometry [4].

Tungsten carbide in a cobalt matrix (WC-Co) is used in current manufacturing method. The fabrication of the micro end mills with sharp edges cannot be done using WC-Co