TABLE OF CONTENT

PREFACE ... i
TABLE OF CONTENT ... iii
CONTRIBUTING AUTHORS .. xiii

PART I
FUNDAMENTAL COMPRESSOR FOR AIRCRAFT’S TURBO ENGINES

NOMENCLATURE. .. 2

CHAPTER ONE
INTRODUCTION TO COMPRESSORS. 4
1.1 Introduction ... 4
1.2 Types of Compressors .. 4
 1.2.1 Positive Displacement Compressors 4
 1.2.2 Dynamic Compressors 4
1.3 Comparison of Compressor Types 5
 1.3.1 Flow rate .. 5
 1.3.2 Efficiency .. 6
 1.3.3 Pressure Ratio .. 7
 1.3.4 Characteristic Curves 7
CHAPTER TWO

TWO-DIMENSIONAL ANALYSIS OF COMPRESSORS. 9

2.1 Velocity diagrams of the compressor stage 10
2.2 Thermodynamics of the compressor stage 10
2.3 Stage loss and efficiency 11
2.4 Reaction ratio 12
2.5 Stage loading 13

CHAPTER THREE

THREE-DIMENSIONAL ANALYSIS OF COMPRESSORS. 15

3.1 Theory of radial equilibrium 15
3.2 Free-vortex flow 16
3.3 Forced vortex 18
3.4 General whirl distribution 18

CHAPTER FOUR

ROTATING STALL AND SURGE. 20

4.1 Performance of Axial and Radial Compressors 20
4.2 Aerodynamic Flow Instabilities 22
 4.2.1 Rotating stall 23
 4.2.2 Surge 24
 4.2.3 Rotating Stall and Surge in Radial Compressors 26

CHAPTER FIVE

MODELING OF COMPRESSION SYSTEMS. 27

5.1 Introduction 27
5.2 Greitzer lumped parameter model 28

CHAPTER SIX

COMPRESSOR MODELS. 34
CHAPTER SEVEN

SURGE AND ROTATING STALL.

7.1 Stability of compression systems
7.2 Control of Surge and Rotating Stall
7.3 Avoidance Control
7.4 Active Control

REFERENCE OF PART I.

PART II

RIGID-BODY DYNAMICS OF AIR VEHICLE

CHAPTER EIGHT

AIRCRAFT RIGID-BODY EQUATION OF MOTIONS: A NONLINEAR MODEL

8.1 Introduction
8.2 Definition of Axes and Angles
8.3 The Rigid-Body Equations
8.4 Conclusions

CHAPTER NINE

AIRCRAFT EQUATIONS OF MOTIONS: A NONLINEAR MODEL

9.1 Introduction
9.2 Orientation and Position of the Airplane
9.3 Euler's Equations of Motion
9.4 Effect of Spinning Rotors
9.5 The Collected Equations
CHAPTER TEN
AIRCRAFT EQUATIONS OF MOTION: A LINEAR MODEL
10.1 Introduction 63
10.2 The Small-Disturbance Theory 63
10.3 Conclusions 69

REFERENCE OF PART II 70

PART III
DYNAMICS OF FLEXIBLE STRUCTURE OF AIR VEHICLE 71

NOMENCLATURES 72

CHAPTER ELEVEN
OVERVIEW OF DYNAMICS OF FLEXIBLE AIR VEHICLE 76
11.1 Introduction 76
11.2 The Influence of the Structural Flexibility on Vehicle Design 76
11.3 Non-uniform Beam Finite Element 77
11.4 Aerodynamic Discrete Element Methods 79
11.5 The doublet lattice method (DLM) 79
11.6 The doublet point method (DPM) 80
11.7 Conclusions 81

CHAPTER TWELVE
TRANSLATION OF AXIS PROCEDURE TO CONSTRUCT STIFFNESS MATRIX
12.1 Introduction 83
12.2 Static Equivalence Translation 83
12.3 Kinematic Equivalence Translation 84
12.4 Stiffness Matrix Construction 85
12.5 Conclusion 87

CHAPTER THIRTEEN
MINIMUM DENOMINATOR OF RATIONAL FUNCTION
13.1 Introduction 88
13.2 Rational Function Transformation 88
13.3 MDRF Procedure for Non-linear Variation of the Stiffness Distribution 89
13.4 Direct Differentiation Method 90
13.5 Substitution Procedure 91
13.6 Conclusion 93

CHAPTER FOURTEEN
TORSIONAL STIFFNESS MATRIX OF NON-PRISMATIC BEAM ELEMENTS
14.1 Introduction 94
14.2 Torsional - Twist Deformation Relation 94
14.3 Deformation of the Cantilever Bar Problem 95
14.4 Flexibility Matrix of the Cantilever Bar 97
14.5 Stiffness Matrix 97
14.6 Conclusion 98

CHAPTER FIFTEEN
BENDING STIFFNESS MATRIX OF NON-PRISMATIC BEAM ELEMENTS
15.1 Introduction 99
15.2 Load - Displacement Relation 99
15.3 Displacement of a Cantilever Bar Problem 100
15.4 Flexibility Matrix of the Cantilever Beam 103
15.5 Stiffness Matrix 104
15.6 Conclusion 104
CHAPTER SIXTEEN

FORMULATION OF KERNEL FUNCTION FOR AERODYNAMIC LOADING ON AIR VEHICLE

16.1 Introduction 105
16.2 Formulations of the Kernel Function 105
16.3 The formulation of Watkins, Runyan and Woolston 106
16.4 Formulations of Laschka 107
16.5 Formulations of Yates 109
16.6 Formulations of Landahl 109
16.7 Conclusion 110

CHAPTER SEVENTEEN

UNSTEADY AERODYNAMIC THEORY OF LIFTING SURFACE

17.1 Introduction 111
17.2 Assumptions 111
17.3 Basic Concept 111
17.4 Boundary Conditions 113
17.5 Kernel Function 113
17.6 Incomplete Cylindrical Function 115
17.7 Conclusion 115

CHAPTER EIGHTEEN

NUMERICAL EVALUATIONS OF HYPERGEOMETRIC CYLINDRICAL FUNCTIONS

18.1 Introduction 117
18.2 Kernel Integral Function 117
18.3 Modified Bessel Function of the First Kind of Order 0 118
18.4 Modified Bessel Function of the First Kind of Order 1 119
18.5 Modified Bessel Function of the Second Kind of Order 0 120
18.6 Modified Bessel Function of the Second Kind of Order 1 121
18.7 Modified Struve Function 121
18.8 Conclusion 122
CHAPTER TWENTY SIX

IMPROVED VORTEX LATTICE METHOD

26.1 Introduction 162
26.2 Present Vortex Lattice Method 162
26.3 Conclusion 167

CHAPTER TWENTY SEVEN

IMPROVED DOUBLET POINT METHOD

27.1 Introduction 168
27.2 Present DPM for Planar Lifting Surfaces 168
27.3 Present DPM for Non-Planar Lifting Surfaces 170
27.4 Conclusion 174

CHAPTER TWENTY EIGHT

IMPROVED DOUBLET LATTICE METHOD

28.1 Introduction 176
28.2 Present DLM for Planar Lifting Surfaces 176
28.3 Conclusion 179

CHAPTER TWENTY NINE

APPLICATION OF THE AERODYNAMIC DISCRETE ELEMENT METHODS

29.1 Introduction 180
29.2 Delta Wing with AR=2 180
29.3 Cropped-Double-Delta Wing 182
29.4 Sweptback Wing with Partial Flap 183
29.5 AGARD Wing-Horizontal Tail 184
29.6 Conclusion 186

CHAPTER THIRTY

AEREOELASTIC STABILITY PROBLEM OF AIR VEHICLE

30.1 Introduction 187
30.2 The Flutter Solution Method 187
30.3 Validation of the present flutter procedure 191
30.4 Conclusion 193

REFERENCES OF PART III 195
CHAPTER
NINE

AIRCRAFT EQUATIONS OF MOTION

A non linear model

9.1. Introduction

In this chapter, the orientation and position of the aircraft motion based on the non-linear model is described before developing the aircraft equation of motion. The equation is first derived in the form of Euler’s force and moment equations of motions. The full equations of motion include also the effect of spinning rotors.

9.2. Orientation and Position of the Airplane

The position and orientation of the airplane are given relative to the Earth-fixed frame F_E. The CG has position vector r_c, with coordinates (x_E, y_E, z_E).

The orientation of the airplane is given by a series of three consecutive rotations known as the Euler angles. The airplane is imagined first to be oriented such that its axes are parallel to those of F_E, hence its position is $C x_1 y_1 z_1$. Then the following rotations are applied:

1. A rotation ψ about $o z_1$, carrying the axes to $C x_2 y_2 z_2$.
2. A rotation θ about $o y_2$, carrying the axes to $C x_3 y_3 z_3$
3. A rotation ϕ about $o x_3$ carrying the axes to $C x_4 y_4 z_4$

where the ranges are limited to

$$-\pi \leq \psi < \pi \text{ or } 0 \leq \psi \leq 2\pi$$

$$-\frac{\pi}{2} \leq \theta \leq \frac{\pi}{2}$$

$$-\pi \leq \phi < \pi \text{ or } 0 \leq \phi \leq 2\pi$$ \hspace{1cm} (9.1)

In a vertical climb or dive,