TABLE OF CONTENTS

Preface	i
Acknowledgement	ii
Editor	iii
Table of Content	v
1. Visual Tracking for Human Face	1
A.A. Shafie, Iqbal and M.R. Khan	
2. Robot Design: A Case Study of Team Learning Experience and Outcome	7
A.A. Shafie	
3. Development Neck Support for Humanoid Robot Head	14
A.A. Shafie, M.N. Kasyfi and N.I. Taufik Y	
4. Development of Cooperative Mini Robot	21
Amir A. Shafie, Siti E.M.Z and Shazeela A	
5. Humanoid Robot Arm	26
Amir A. Shafie and Mohd N. Y.	
A. Iqbal, A.A. Shafie, and M.R. Khan	
7. An Overview of Fuzzy Based Person Following Robot	38
T. Alamgir, I.J. Alfar and M.M. Rashid	
8. Mechanical Design of a Person Following Robot	43
Tarik Bin Alamgir, Ibrahim Jawad Alfar and Muhammad Mahbubur Rashid	
9. Development of Fuzzy Based Person Following Robot part 2 49
 Tarik Bin Alamgir, Ibrahim Jawad Alfar and Muhammad Mahbubur Rashid

10. Mobile Robot for Fined Tube Inspection 56
 Muhammad Mahbubur Rashid

11. Robot Aided Upper Limb Rehabilitation System: Mechanical Design 64
 Shahrul Na’im Sidek, Hidayatullah Mohamed Nawi

12. Robot Aided Upper Limb Rehabilitation System: Electronics for Sensors and Actuators 69
 Shahrul Na’im Sidek, Khairul Anwar Khalid

13. Robot Aided Upper Limb Rehabilitation System: Results and Analysis 73
 Shahrul Na’im Sidek

 Raisuddin Khan, Mitsuru Watanabe and Masum Billah

15. Multiple Hexapod Robot and Collaborative communication 86
 Raisuddin Khan, Masum Billah and Mohiuddin Ahmed

 Atika Adrina Teepol, Nur Fadhillah Mohd Fauzy, Shahrul Na’im Sidek, Yasir Mohd Mustafah

17. Autonomous Unicycle Robot Using Reaction Wheel Pendulum: Controller Design 103
 Nur Fadhillah Mohd Fauzy, Atika Adrina Teepol, Shahrul Na’im Sidek, Yasir Mohd Mustafah
19. Develop an Algorithm for Goal Finding Robot using Reinforcement Learning
 M. Kamal, R. Khan, S. Bazuhair and M. Billah
 118

20. Design and Development of 2 Fingers Robotic Hand Actuated by Active Grasping Data
 MdMozasser Rahman¹, MohdZoolfadli B MdSalleh
 126

21. Design and Development of Interactive Fish Robot
 MdMozasser Rahman¹, RizaMuhida and Mohammad Zukhair b MohdNazmi
 144

22. Design and Development of A Digger Robot
 MdMozasser Rahman, MohdRuzaini Bin AbdRalim and Others
 154

23. Glass Wall Cleaning Robot: A Review
 Md Mozasser Rahman, Ahmed Murgab Mohammed Mahil,
 Norsofiana Bt Umar and Nurul Izzati Bt Samsuddin
 170

24. Glass Wall Cleaning Robot: -Electrical design and control
 Md Mozasser Rahman, Ahmed Murgab Mohammed Mahil,
 Norsofiana Bt Umar and Nurul Izzati Bt Samsuddin
 177

25. Glass Wall Cleaning Robot: -Electrical design and control
 M. M. Rahman, M. R. b A. Ralim
 187

26. Development of Robotic Manipulator to assist human using brain signal
 Mahbuba Hossain, Raisuddin Khan, and Masum Billah
 198

27. Glass Wall Cleaning Robot: Mechanical Design
 Mahbuba Hossain Raisuddin Khan, and Masum Billah
 204
28. Intelligent SCADA Based Monitoring Scheme for Low Voltage Distribution System 210
 M. J. E. Salami, A. M. Aibinua, Mohd Shafie Bin Sani and Nurfaizal Bin Wahi

29. Intelligent SCADA Based Monitoring Scheme for Low Voltage Distribution System 218
 Abdullateef Ayodele Isqcel and Momoh Jimoh Eyiomika Salami.

30. Autonomous Goal Finding Robot 227
 M. Kamal, Md. R. Khan, Faisal and M. Billah

31. Intelligent SCADA Based Pipe Monitoring System 236
 M. J. E. Salami, A. M. Aibinua, Mohd Shafie Bin Sani and Nurfaizal Bin Wahi

32. Path Tracking of Car Like Mobile Robot 250
 A. A. Isqela and M. J. E. Salami

33. A New Energy Efficient Building System 255
 M. J. E. Salami, Md. R. Khan, O. A. Abdulquadric

34. Automatic Car Parking System 262
 M. J. E. Salami, Md. R. Khan and O. A. Abdulquadria

35. Anthropomorphic biped robot 267
 A. A. Shafie, M. F. Baharudin
CHAPTER 28
Intelligent SCADA Based Pipe Monitoring System
M. J. E. Salami, A. M. Aibinu\(^a\), Mohd Shafie Bin Sani and Nurfaizal Bin Wahi
Intelligent Mechatronics System Research Group
Department of Mechatronics Engineering, International Islamic University Malaysia
P.O. Box 10, 50728, Kuala Lumpur, Malaysia
\(^a\)maibinu@iium.edu.my

28.1. Introduction

A SCADA system, utilized as a leak detection system, employs various sensors to measure physical or chemical parameters (pressure, temperature, flow rate, level, and concentration) in pipelines or tanks and converts these parameters into electronic signals. These signals are sent to a data acquisition system, a signal conditioning unit, and are finally analyzed using computer algorithms to produce a leakage determination. SCADA systems are used to control large networks of pipelines such as oil and gas monitoring. A central computer monitors the system for changes in pressure, flow rate, and volume of liquid. More than one leak detection algorithm can be integrated into a SCADA system to monitor the entire pipeline network. This allows for accurate leak detection, including leak location and flow rate identification. (Baile, 2003)

One of the most important applications of SCADA system is in Oil and Gas transportation. This industry is among the important business in the world. Oil and gas regarded as the main energy source of the world nowadays. However, this business exposes human being to risk. The rise in oil and gas industry can be fatal especially with respect to ecosystem and pollution. Throughout history, there are many cases of oil pipeline burst which cause losses to the oil and gas company. Monitoring is important to detect earlier damage of the pipeline. This action can save the cost of maintenance while prevent serious damage along the pipeline. (Clark, 2004). A very long oil and gas pipeline is hard to monitor. Long range pipeline used to transport crude oil from oil field or to transport oil to transporting port. Minor leakage is hard to be detected and accident can happen anytime as oil and gas is an highly flammable material. Continuous monitoring system is a must in oil and gas pipeline. Thus, SCADA present an effective solution to these problems. Oil and gas pipeline built to optimize the oil and gas company revenue. The pipeline operation must not disturb in order to maintain maximum output of processed oil from the refinery. Leakage detection must be done without shutting down the pipeline system. To conclude, SCADA system will save time and money by detecting the leakage location. (Baile, 2003)

The purpose of this project is to design and develop an Intelligent SCADA-Based pipe monitoring system for oil and gas in particular. The aim of this project is to study technique of detecting pipe burst, leakage and weak flow rate. All parameters monitoring need to be done by SCADA. In addition, the intelligent SCADA system also can make its own decision in handling situation.

The significance of this project is that it can prevent worst leakage and burst coming inside the pipe. It can detect the crack that occurs inside the pipe and further actions needed to be taken before it get worst. The government usually distributes the crude oil using pipeline installed offshore. So, it is crucial to maintain this pipeline to guide against any burst or leakage as the cost of maintenance is high. Instead of spending money on repairing pipes, it can be control directly or treated immediately.

Oil and gas pipeline is an important element in oil and gas industry. It is used for oil and gas transportation and it is more efficient than other method such as tanker ship and railroad. However, it also has its drawbacks, firstly, it can be very dangerous. Secondly, minor leakage can cause fatal losses and pollution of the ecosystem. Detection of leak in pipelines is an important task for